7-Etil-6-klor-2-metilkromon ve 7-Etil-6-klorflavonun Sentezi ve Teorik Hesaplamaları

Bu çalışmada, 7-Etil-6-klor-2-metil kromon ve 7-Etil-6-klorflavon bileşikleri sentezlenmiştir ve teorikspektroskopik özellikleri B3LYP/6-31G(d,p) temel seti ile araştırılmıştır. Sentezlenen bileşiklerin ilk olarak DFTyöntemi ve 6-31G(d,p) temel setinden faydalanılarak optimizasyonları yapılmıştır. Bileşikler için 1H NMRkimyasal kayma değerleri hesaplanmıştır ve teorik olarak hesaplanan değerlerin elde edilen deneysel verilerleuyum içinde olduğu görülmüştür. Deneysel ve teorik kimyasal kayma değerleri için korelasyon grafiği ileregrasyon analizleri yapılmıştır. Ayrıca, çalışılan bileşiklerin en yüksek dolu moleküler orbital enerjisi (HOMO)ve en düşük boş moleküler orbital enerjisi (LUMO), bağ uzunlukları, bağ açıları ve Mulliken atomik yük değerlerihesaplanmıştır. HOMO ve LUMO enerji değerlerinden yararlanılarak iyonizasyon potansiyeli, elektron ilgisi,elektronegatiflik, kimyasal sertlik, kimyasal yumuşaklık gibi parametrelerin hesaplamaları yapılmıştır.

Synthesis and Theoretical Calculations of 7-Ethyl-6-chloro-2- methylchromone and 7-Ethyl-6-chloroflavone

In this study, 7-Ethyl-6-chlor-2-methyl chromone and 7-Ethyl-6-chlorflavone compounds were synthesized and their theoretical spectroscopic properties were investigated with the basis set of B3LYP/6-31G(d,p). The synthesized compounds were first optimized by using the DFT method and 6-31G(d,p) basisset. 1H NMR chemical shift values were calculated and the theoretically calculated values were found to be consistent with the obtained experimental data. The regression analysis was performed with correlation graph for experimental and theoretical chemical shift values. In addition, the highest occupied molecular orbital energy (HOMO) and lowest unoccupied molecular orbital energy (LUMO), bond lengths, bond angles and Mulliken atomic charge values were calculated. The calculations for parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness were performed by using HOMO and LUMO energy values.

___

  • [1] Gourdeau H., Leblond L., Hamelin B., Desputeau C., Dong K., Kianicka I., Custeau D., Boudreau C., Geerts L., Cai S.X., Drewe J., Labrecque D., Kasibhatla S., Tseng B. 2014. Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Molecular Cancer Therapeutics, 3 (11): 1375-1384.
  • [2] Sangani C.B., Shah N.M., Patel M.P., Patel R.G. 2012. Microwave-assisted synthesis of novel 4H-chromene derivatives bearing phenoxypyrazole and their antimicrobial activity assessment. Journal of the Serbian Chemical Society, 77 (9): 1165-1174.
  • [3] Mladenović M., Mihailović M., Bogojević D., Matić S., Nićiforović N., Mihailović V., Vuković N.,Sukdolak S.,SolujićS. 2011. In Vitro Antioxidant Activity of Selected 4-Hydroxy-chromene2-one Derivatives SAR, QSAR and DFT Studies. International Journal of Molecular Sciences, 12 (5): 2822–2841.
  • [4] Cheng J.F., Ishikawa A., Ono Y., Arrhenius T., Nadzan A. 2003. Novel Chromene Derivatives as TNF-α Inhibitors. Bioorganic&Medicinal Chemistry Letters, 13 (21): 3647-3650.
  • [5] Thareja S., Verma A., Kalra A., Gosain S., Rewatkar P.V., Kokil G.R. 2010. Novel Chromeneimidazole Derivatives As Antifungal Compounds: Synthesis and In Vitro Evaluation. Acta Poloniae Pharmaceutica Drug Research, 67 (4): 423-427.
  • [6] Jain N., Xu J., Kanojia R.M., Du F., Jian-Zhong G., Pacia E., Lai M.T., Musto A., Allan G., Reuman M., Li X., Hahn D., Cousineau M., Peng S., Ritchie D., Russell R., Lundeen S., Sui Z. 2009. Identification and Structure-Activity Relationships of Chromene-Derived Selective Estrogen Receptor Modulators for Treatment of Postmenopausal Symptoms. Journal of Medicinal Chemistry, 52 (23): 7544-7569.
  • [7] Mori J., Iwashima M., Takeuchi M., Saito H. 2006. A Synthetic Study on Antiviral and Antioxidative Chromene Derivative. Chemical and Pharmaceutical Bulletin, 54 (3): 391-396.
  • [8] Kandeel M.M. , Aliaa M.K., Abdelall E.K.A. 2012. Design and synthesis of substituted chromenes as potential anticancer agents. International Journal of Pharmaceutical Research & Development, 4 (3): 310-322.
  • [9] Karia D.C., Pandya H.K., Godvani N.K. 2012. Synthesis, Characterization & Anti-Hiv Activity of 4-Hydroxy-3-(5-Methylisoxazol-3-Yl) Pyrano (3,2-C) Chromene-2,5-Dione. Asian Journal of Biochemical and Pharmaceutical Research, 2 (2): 126-130.
  • [10] Kamdar N.R., Haveliwala D.D., Mistry P.T., Patel S. 2011. Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[2,3-d]pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles. Medicinal Chemistry Research, 20 (7): 854- 864.
  • [11] Gupta S., Kumar N., Kumar S., Dudhe R., Gupta H. 2012. 3-Hydroxy-2-(substituted phenyl) - 4H-chromen-4-one derivatives- synthesis, spectral characterization and pharmacological screening. International Journal of Therapeutic Applications, 7: 1-8.
  • [12] Bhat M.A., Siddiqui N., Khan S.A. 2008. Synthesis of novel 3-(4-acetyl-5H/methyl-5-substituted phenyl-4,5-dihydro-1,3,4-oxadiazol-2-yl)-2H-chromen-2-ones as potential anticonvulsant agents. Acta Poloniae Pharmaceutica, 65 (2): 235-239.
  • [13] Thompson L.A., Ellman J.A. 1996. Synthesis and Applications of Small Molecule Libraries. Chemical Reviews, 96: 555-600.
  • [14] Lingen H.L., Zhuang Wei., Hansen T., Rutjes F.P.J.T., Jørgensen K.A. 2003. Formation of optically active chromanes by catalytic asymmetric tandem oxa-Michael addition–Friedel–Crafts alkylation reactions. Organic and Biomolecular Chemistry, 11: 1953-1958.
  • [15] Yao N., Song A., Wang X., Dixon S., Lam K.S. 2007. Synthesis of Flavonoid Analogues as Scaffolds for Natural Product-Based Combinatorial Libraries. American Chemical Society, 9: 668-676.
  • [16] Atohoun Y.G.S., Doco R.C. , Houngue M.T.A.K., Kuevi A.U., Kpotin G.A., Mensah J.B. 2016. Theoretical Study of antioxidant properties of three isomers flavonoids: kaempferol, luteolin and fisetin. American Journal of Scientific And Industrial Research, 7 (6): 145-152.
  • [17] Frisch M.J., Trucks H.B., Schlegel G.E., Scuseria M., Robb J.R., Cheeseman G., Scalmani V., Barone B., Mennucci G.A., Petersson H., Nakatsuji M., Caricato X., Li H.P., Hratchian A.F., Izmaylov J., Bloino G., Zheng J.L, Sonnenberg M., Hada M., Ehara K, Toyota R, Fukuda J, Hasegawa M., Ishida T., Nakajima Y., Honda O., Kitao H., Nakai T., Vreven A., Montgomery J., Peralta F., Ogliaro M., Bearpark J.J., Heyd E., Brothers K.N., Kudin V.N., Staroverov R., Kobayashi J., Normand K., Raghavachari A., Rendell J.C., Burant S.S., Iyengar J., Tomasi M., Cossi N., Rega J.M., Millam M. 2009. Gaussian Inc. Wallingford CT.
  • [18] Lee C., Yang W., Parr R.G. 1988. Development of the Colle- Salvetti correlation energy formula into a functional of the electron density. Physical Review B, 37 (2): 785-789. [19] Wolinski K., Hinton J.F., Pulay P. 1990. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112: 8251-8260.
  • [20] Erdoğdu Y., Ünsalan O., Güllüoğlu M.T. 2009. Vibrational analysis of flavone. Turkish Journal of Physics, 33: 249-259.
  • [21] Günay N., Gümüş H. Atalay Y. 2011. L-Asparaginyum Pikrat Molekülünün Spektroskopik Özelliklerinin Teorik Olarak İncelenmesi. Sakarya Üniversitesi Fen Edebiyat Dergisi, 15-32.
  • [22] Boopathi M. M., Udhayakala P., Ramkumaar G.R. 2016. Vibrational spectroscopic (FT-IR, FTRaman), NMR and electronic structure calculations of metaxalone. Der Pharma Chemica, 8 (7): 161-172.