STAPHYLOCOCCUS AUREUS'UN KATI LİPİD NANOPARTİKÜLLER İLE ETKİLEŞİMİ

Amaç: Bakterilerin mevcut antibiyotiklere direnç geliştirme yeteneği, yeni antimikrobiyallerin ya da antimikrobiyal formülasyonların araştırılmasının aciliyetini ortaya koymaktadır. İlaç taşıyıcı sistemler arasında, katı lipid nanopartiküller, hedeflenen ilaç uygulaması için avantajlara sahip, çözüm odaklı sistemler olarak kabul edilir.

INTERACTION OF STAPHYLOCOCCUS AUREUS WITH SOLID LIPID NANOPARTICLES

Objective: The ability of bacteria to develop resistance to existing antibiotics has made the search for new antimicrobials or antimicrobial formulations a matter of urgency. Among drug delivery systems, solid lipid nanoparticles are considered solution-oriented systems with advantages for targeted drug delivery.

___

  • 1. Arana, L., Gallego, L., Alkorta, I. (2021). Incorporation of antibiotics into solid lipid nanoparticles: a promising approach to reduce antibiotic resistance emergence. Nanomaterials (Basel), 11(5), 1251. [CrossRef]
  • 2. WHO. (2020). Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance Accessed: 25.01.2022. 3. Sofowora, A., Ogunbodede, E., Onayade, A. (2013). The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary and Alternative Medicines, 10(5), 210-229. [CrossRef]
  • 4. Yeh, Y.C., Huang, T.H., Yang, S.C., Chen, C.C., Fang, J.Y. (2020). Nano-based drug delivery or targeting to eradicate bacteria for ınfection mitigation: a review of recent advances. Frontiers in Chemistry, 8(286), 1-22. [CrossRef]
  • 5. Jiang, Q., Chen, J., Yang, C., Yin, Y., Yao, K. (2019). Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. BioMed Research International, 2019, 2015978. [CrossRef]
  • 6. Lin, D.M., Koskella, B., Lin, H.C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3),162-173. [CrossRef]
  • 7. Gebreyohannes, G., Nyerere, A., Bii, C., Sbhatu, D.B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8), e02192. [CrossRef]
  • 8. Marslin, G., Revina, A.M., Khandelwal, V.K., Balakumar, K., Sheeba, C.J., Franklin, G. (2015). PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids and Surfaces B: Biointerfaces, 132, 62-70. [CrossRef]
  • 9. Sheeba, C.J., Marslin, G., Revina, A.M., Franklin, G. (2014). Signaling pathways influencing tumor microenvironment and their exploitation for targeted drug delivery. Nanotechnology Reviews, 3(2), 123-151. [CrossRef]
  • 10. Mukherjee, S., Ray, S., Thakur, R.S. (2009). Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmaceutical Sciences, 71(4), 349-358. [CrossRef]
  • 11. Munita, J.M., Arias, C.A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2). [CrossRef]
  • 12. Sharma, A., Vaghasiya, K., Ray, E., Verma, R.K. (2018). Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artificial Cells, Nanomedicine, and Biotechnology, 46(3), 156-165. [CrossRef]
  • 13. Tong, S.Y., Davis, J.S., Eichenberger, E., Holland, T.L., Fowler, V.G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3): 603-661. [CrossRef]
  • 14. Oogai, Y., Matsuo, M., Hashimoto, M., Kato, F., Sugai, M., Komatsuzawa, H. (2011). Expression of virulence factors by Staphylococcus aureus grown in serum. Applied and Environmental Microbiology, 77(22), 8097-8105. [CrossRef]
  • 15. Chambers, H.F., Deleo, F.R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 7(9), 629-641 [CrossRef]
  • 16. Shapiro, H.M. (2001). Optical measurements in cytometry: Light scattering, extinction, absorption, and fluorescence. Methods in Cell Biology, 63, 107-129. [CrossRef]
  • 17. Zucker, R.M., Daniel, K.M. (2012). Detection of TiO2 nanoparticles in cells by flow cytometry. Methods in Molecular Biology, 906, 497-509. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

ASETONİTRİL-SU İKİLİ KARIŞIMLARINDA BAZI İMİDAZOL ANTİMİKOTİK İLAÇLARIN KROMATOGRAFİK PROTONASYON SABİTLERİNİN BELİRLENMESİ

Hayrettin SEÇİLMİŞ, Ebru ÇUBUK DEMİRALAY, Kader POTURCU

COVID-19 YAYILMASINDA ARKADAŞ HAYVANLARIN ROLÜ

Nigün ÜNAL

BAZI 1,2,4-TRİAZOL YOĞUNLAŞTIRILMIŞ TÜREVLERİNİN SENTEZİ, ÖZELLİKLERI VE BİYOLOJİK POTANSİYELİ

Andrey GOTSULYA, Tetiana BRYTANOVA

AKUT HAREKETSİZLİK STRES KOŞULLARINDA SODYUM 2-((4-AMİNO-5-(TİYOFEN-2-İLMETİL)-4H-1,2,4-TRİAZOL-3-İL)TİYO) ASETAT’IN SIÇAN KARACİĞERİNİN DURUMU ÜZERİNDEKİ DÜZELTİCİ ETKİSİNİN HİSTOLOJİK ÇALIŞMASI

Andrey SAFONOV, Denys DEMİANENKO, Yevheniia VASHCHYK, Yuliia LARİANOVSKA, Dmytro LYTKİN, Roman SHCHERBYNA, Anna OCHERETNİUK, Svitlana ROMANOVA

DEKSRAZOKSANIN OLASI KARDİYOPROTEKTİF ETKİ MEKANİZMASI VE MUHTEMEL İNSAN TOPOİZOMERAZ IIΒ İNHİBİTÖRLERİ: İN SİLİCO ANALİZ

Fuat KARAKUŞ, Burak KUZU

ANTİVİRAL ETKİLİ BİTKİLER

Tuğçe İNCE KÖSE, Ayşe Mine GENÇLER ÖZKAN

ÇOKLU HESAPLAMALI YAKLAŞIMLA ÜÇ SARS-COV-2 İLAÇ HEDEFLERİ ÜZERİNDE SANAL TARAMA VE MOLEKÜLER DOKİNG ANALİZİ

İsmail ÇELİK, Meryem EROL, Ebru UZUNHİSARCIKLI, Ufuk İNCE

ANTİPARKİNSON İLAÇLARINA VERİLEN BİREYSEL YANITTA FARMAKOGENETİĞİN ROLÜ

Ahmet Hüsamettin BARAN

BEHÇET HASTALIĞININ TEDAVİSİ VE GÜNCEL YAKLAŞIMLAR

Gözde YENİCE ÇAKMAK, Ahmet Özer ŞEHİRLİ

MS HASTALIĞININ TEDAVİSİ İÇİN YENİ SİKLOFİLİN D RESEPTÖR İNHİBİTÖRLERİNİN GELİŞTİRİLMESİ

Gozde YALCİN, Birsen HUYLU