ANTİPARKİNSON İLAÇLARINA VERİLEN BİREYSEL YANITTA FARMAKOGENETİĞİN ROLÜ

Amaç: Alzheimer hastalığından sonra ikinci en yaygın nörodejeneratif bozukluk olan Parkinson hastalığı, tremor, rijidite, bradikinezi ve postural instabilite ile karakterize ilerleyici bir nörodejeneratif hastalıktır. Çevresel ve genetik faktörler bu hastalığın patofizyolojisine katkıda bulunur. Dopaminin öncüsü olan L-DOPA, farmakoterapinin altın standardı olmaya devam etmektedir. Mevcut terapötik seçenekler klinik olarak faydalı olsa da parkinson hastalığı ilerleyici bir bozukluk olduğu için tedavisinde kullanılan tüm ilaçlarda zamanla etkinlik azalması ve yan etkilerde artış söz konusu olmaktadır.

THE ROLE OF PHARMACOGENETICS IN INDIVIDUAL RESPONSE TO ANTIPARKINSONIAN DRUGS

Objective: Parkinson’s disease, the second most common neurodegenerative disorder after Alzheimer’s, is a progressive neurodegenerative disease characterized by tremor, rigidity, bradikinesis and postural instability. Environmental and genetic factors contribute to the pathophysiology of this disease. The pioneer of dopamine, L-DOPA, remains the gold standard of pharmacotherapy. Although current therapeutic options are clinically beneficial, since parkinson’s disease is a progressive disorder, all drugs used in treatment decline over time and increase in side effects.

___

  • 1. Parkinson, J.J.T.J.o.n. and c. neurosciences. (2002). An essay on the shaking palsy. 14(2), 223-236.
  • 2. Poewe, W., et al. (2017). Parkinson disease. Nature reviews Disease primers, 3(1), 1-21.
  • 3. Cacabelos, R. (2017). Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci, 18(3). doi:10.3390/ijms18030551
  • 4. Raza, C., R. Anjum, and N.U.A. Shakeel. (2019). Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci, 226, 77-90. doi:10.1016/j.lfs.2019.03.057
  • 5. Balestrino, R. and A. Schapira. (2020). Parkinson disease. European journal of neurology, 27(1), 27-42.
  • 6. Zesiewicz, T.A. (2019). Parkinson disease. CONTINUUM: Lifelong Learning in Neurology, 25(4), 896-918.
  • 7. Paul, A. and K.S. Yadav. (2020). Parkinson's disease: Current drug therapy and unraveling the prospects of nanoparticles. Journal of Drug Delivery Science and Technology, 58, 101790.
  • 8. Kurzawski, M., M. Białecka, and M. Droździk. (2015). Pharmacogenetic considerations in the treatment of Parkinson's disease. Neurodegenerative disease management, 5(1), 27-35.
  • 9. Damasceno dos Santos, E.U., et al. (2019). Pharmacogenetic profile and the occurrence of visual hallucinations in patients with sporadic Parkinson's disease. The Journal of Clinical Pharmacology, 59(7), 1006-1013.
  • 10. Redenšek, S., et al. (2020). Clinical and clinical-pharmacogenetic models for prediction of the most common psychiatric complications due to dopaminergic treatment in Parkinson’s disease. International Journal of Neuropsychopharmacology, 23(8), 496-504.
  • 11. Shah, R.R. and D.R. Shah. (2012). Personalized medicine: is it a pharmacogenetic mirage? British journal of clinical pharmacology, 74(4), 698-721.
  • 12. Spear, B.B., M. Heath-Chiozzi, and J. Huff. (2001). Clinical application of pharmacogenetics. Trends in molecular medicine, 7(5), 201-204.
  • 13. Redenšek, S., et al. (2019). Dopaminergic Pathway Genes Influence Adverse Events Related to Dopaminergic Treatment in Parkinson's Disease. Frontiers in Pharmacology, 10(8). doi:10.3389/fphar.2019.00008
  • 14. Dauer, W. and S. Przedborski. (2003). Parkinson's disease: mechanisms and models. Neuron, 39(6), 889-909. doi:10.1016/s0896-6273(03)00568-3
  • 15. Simon, D.K., C.M. Tanner, and P. Brundin. (2020). Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clinics in geriatric medicine, 36(1), 1-12. doi:10.1016/j.cger.2019.08.002
  • 16. Trist, B.G., D.J. Hare, and K.L. Double. (2019). Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 18(6), e13031. doi:10.1111/acel.13031
  • 17. Puspita, L., S.Y. Chung, and J.-W. Shim. (2017). Oxidative stress and cellular pathologies in Parkinson's disease. Molecular brain, 10(1), 53-53. doi:10.1186/s13041-017-0340-9
  • 18. Huot, P., et al. (2017). Serotonergic approaches in Parkinson’s disease: translational perspectives, an update. 8(5), 973-986.
  • 19. Dietrichs, E. and P. Odin. (2017). Algorithms for the treatment of motor problems in Parkinson's disease. Acta Neurol Scand, 136(5), 378-385. doi:10.1111/ane.12733
  • 20. Kalinderi, K., et al. (2011). Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. 65(12), 1289-1294.
  • 21. Tirozzi, A., et al. (2021). Analysis of Genetic and Non-genetic Predictors of Levodopa Induced Dyskinesia in Parkinson’s Disease. Frontiers in pharmacology, 12, 987.
  • 22. Tappakhov, A., et al. (2020). Pharmacogenetics of drug-induced dyskinesias in Parkinson's disease. Neurology, Neuropsychiatry, Psychosomatics, 12(1), 87-92.
  • 23. Cerri, S., L. Mus, and F. Blandini. (2019). Parkinson's Disease in Women and Men: What's the Difference? J Parkinsons Dis, 9(3), 501-515. doi:10.3233/jpd-191683
  • 24. Olanow, C.W., M.B. Stern, and K. Sethi. (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4), S1-136. doi:10.1212/WNL.0b013e3181a1d44c
  • 25. Liu, Y.Z., et al. (2009). Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson's disease patients. Eur J Clin Pharmacol, 65(7), 679-83. doi:10.1007/s00228-009-0658-z
  • 26. Rao, S.S., L.A. Hofmann, and A. Shakil. (2006). Parkinson's disease: diagnosis and treatment. Am Fam Physician, 74(12), 2046-54.
  • 27. Rezak, M. (2007). Current Pharmacotherapeutic Treatment Options in Parkinson’s Disease. Disease-a-Month, 53(4), 214-222. doi:https://doi.org/10.1016/j.disamonth.2007.05.002
  • 28. Oertel, W. and J.B. Schulz. (2016). Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem, 139 Suppl 1, 325-337. doi:10.1111/jnc.13750
  • 29. Kuhn, W. and T.J.N. Müller. (2020). Amantadine for Treating Parkinson’s Disease. 1-6.
  • 30. Conrad Musey, B. Medical therapies for motor symptoms in Parkinson’s Disease.
  • 31. Korczyn, A.D. (2004). Drug treatment of Parkinson's disease. Dialogues in clinical neuroscience, 6(3), 315-322. doi:10.31887/DCNS.2004.6.3/akorczyn
  • 32. County, M.J.T.J.o.f.p. (2018). Parkinson’s disease: A treatment guide. 67(5).
  • 33. Borovac, J.A. (2016). Side effects of a dopamine agonist therapy for Parkinson's disease: a mini-review of clinical pharmacology. The Yale journal of biology and medicine, 89(1), 37-47.
  • 34. Philip, A.E., G. DeMaagd, and M.F.J.M.C.o.D.A.t.N.S. Khan. (2020). Parkinson Disease and Antiparkinsonian Drugs. 2, 321-376.
  • 35. Masellis, M., et al. (2016). Dopamine D2 receptor gene variants and response to rasagiline in early Parkinson’s disease: a pharmacogenetic study. 139(7), 2050-2062.
  • 36. Shah, R.R. and D.R.J.B.j.o.c.p. Shah. (2012). Personalized medicine: is it a pharmacogenetic mirage? , 74(4), 698-721.
  • 37. Le Couteur, D.G., et al. (1997). Association of a polymorphism in the dopamine-transporter gene with Parkinson's disease. Mov Disord, 12(5), 760-3. doi:10.1002/mds.870120523
  • 38. Higuchi, S., et al. (1995). Polymorphisms of dopamine receptor and transporter genes and Parkinson's disease. J Neural Transm Park Dis Dement Sect, 10(2-3), 107-13. doi:10.1007/bf02251226
  • 39. Ziegler, D.A., et al. (2014). Motor impulsivity in Parkinson disease: Associations with COMT and DRD 2 polymorphisms. 55(3), 278-286.
  • 40. Rascol, O., et al. (2000). A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. N Engl J Med, 342(20), 1484-91. doi:10.1056/nejm200005183422004
  • 41. Comi, C., et al. (2017). Polymorphisms of dopamine receptor genes and risk of l-dopa–induced dyskinesia in parkinson’s disease. 18(2), 242.
  • 42. Liu, Y.-Z., et al. (2009). Association of the DRD2 and DRD3 polymorphisms with response to pramipexole in Parkinson’s disease patients. European Journal of Clinical Pharmacology, 65(7), 679-683. doi:10.1007/s00228-009-0658-z
  • 43. Becker, M.L., et al. (2011). OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users. Neurogenetics, 12(1), 79-82. doi:10.1007/s10048-010-0254-5
  • 44. Altmann, V., et al. (2016). Influence of genetic, biological and pharmacological factors on levodopa dose in Parkinson's disease. Pharmacogenomics, 17(5), 481-488.
  • 45. Ferrari, M., et al. (2016). Polymorphisms of dopamine receptor genes and risk of visual hallucinations in Parkinson’s patients. European journal of clinical pharmacology, 72(11), 1335-1341.
  • 46. Schumacher-Schuh, A.F., et al. (2013). Polymorphisms in the dopamine transporter gene are associated with visual hallucinations and levodopa equivalent dose in Brazilians with Parkinson's disease. International Journal of Neuropsychopharmacology, 16(6), 1251-1258. doi:10.1017/s1461145712001666
  • 47. Białecka, M., et al. (2004). The effect of monoamine oxidase B (MAOB) and catechol‐O‐methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson's disease. 110(4), 260-266.
  • 48. Sampaio, T.F., et al. (2018). MAO‐B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson's disease. 58(7), 920-926.
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi