MS HASTALIĞININ TEDAVİSİ İÇİN YENİ SİKLOFİLİN D RESEPTÖR İNHİBİTÖRLERİNİN GELİŞTİRİLMESİ

Amaç: Bu çalışmada, multipl skleroz (MS) hastalığında mitokondriyal fonksiyon bozukluğuna neden olan siklofilin D (CypD) reseptörünün inhibisyonu için yeni moleküllerin geliştirilmesine yönelik hesaplamalı çalışmaların yapılması amaçlanmıştır.

DEVELOPMENT OF NEW CYCLOPHILIN D RECEPTOR INHIBITORS FOR THE TREATMENT OF MULTIPLE SCLEROSIS

Objective: In this study, it was aimed to carry out computational studies for the development of new molecules for the inhibition of the cyclophilin D (CypD) receptor, which causes the disability of mitochondrial function in multiple sclerosis (MS) disease.

___

  • Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A., Licznerski, P., Li, H., Nabili, P., Hockensmith, K., Graham, M., Porter, G. A., Jonas, E. A. (2014). An uncoupling channel within the c-subunit ring of the F1F O ATP synthase is the mitochondrial permeability transition pore. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10580–10585. [CrossRef]
  • Azzolin, L., Antolini, N., Calderan, A., Ruzza, P., Sciacovelli, M., Marin, O., Mammi, S., Bernardi, P., Rasola, A. (2011). Antamanide, a derivative of amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS ONE, 6(1), 26–29. [CrossRef]
  • Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn II, G. W., Molkentin, J. R. (2004). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 430(7003), 984–984. [CrossRef]
  • Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A., Bernardi, P. (2005). Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. Journal of Biological Chemistry, 280(19), 18558–18561. [CrossRef]
  • Basso, E., Petronilli, V., Forte, M. A., Bernardi, P. (2008). Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. Journal of Biological Chemistry, 283(39), 26307–26311. [CrossRef]
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. [CrossRef]
  • Clarke, S. J., McStay, G. P., Halestrap, A. P. (2002). Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. Journal of Biological Chemistry, 277(38), 34793–34799. [CrossRef]
  • Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. [CrossRef]
  • Damsker, J. M., Bukrinsky, M. I., Constant, S. L. (2007). Preferential chemotaxis of activated human CD4 + T cells by extracellular cyclophilin A . Journal of Leukocyte Biology, 82(3), 613–618. [CrossRef]
  • Dassault Systèmes. (2019). Discovery Studio Visualizer (No. 2019). BIOVIA. [CrossRef]
  • Dror, O., Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H. J. (2009). Novel approach for efficient pharmacophore-based virtual screening: Method and applications. Journal of Chemical Information and Modeling, 49(10), 2333–2343. [CrossRef]
  • Forte, M., Gold, B. G., Marracci, G., Chaudhary, P., Basso, E., Johnsen, D., Yu, X., Fowlkes, J., Bernardi, P., Bourdette, D. (2007). Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 104(18), 7558–7563. [CrossRef]
  • Frohman, E. M., Racke, M. K., & Raine, C. S. (2006). Multiple Sclerosis — The Plaque and Its Pathogenesis. New England Journal of Medicine, 354(9), 942–955. [CrossRef]
  • Galat, A. (2004). Function-dependent clustering of orthologues and paralogues of cyclophilins. In Proteins: Structure, Function and Genetics (Vol. 56, Issue 4, pp. 808–820). [CrossRef]
  • Galat, A., Metcalfe, S. M. (1995). Peptidylproline cis/trans isomerases. Progress in Biophysics and Molecular Biology, 63(1), 67–118. [CrossRef]
  • Huylu, B., Yalcin Ozkat, G. (2022). MS Hastalığının Tedavi̇si̇ne Yöneli̇k Yeni Sfi̇ngosi̇n-1-Fosfat Reseptör Modülatörleri̇nin Geli̇şti̇ri̇lmesi̇. Konya Journal of Engineering Sciences, 10(1), 102–114. [CrossRef]
  • Ivery, M. T. G. (2000). Immunophilins: Switched on protein binding domains? In Medicinal Research Reviews (Vol. 20, Issue 6, pp. 452–484). [CrossRef]
  • Koes, D. R., Camacho, C. J. (2012). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(W1), 409–414. [CrossRef]
  • Kong, W., Li, S., Longaker, M. T., Lorenz, H. P. (2007). Cyclophilin C-associated protein is up-regulated during wound healing. In Journal of Cellular Physiology (Vol. 210, Issue 1, pp. 153–160). [CrossRef]
  • Lee, J., Kim, S. S. (2010). An overview of cyclophilins in human cancers. Journal of International Medical Research, 38(5), 1561–1574. [CrossRef]
  • Lin, K., Gallay, P. (2013). Curing a viral infection by targeting the host: The example of cyclophilin inhibitors. Antiviral Research, 99(1), 68–77. [CrossRef]
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. [CrossRef]
  • Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal. [CrossRef]
  • Nath, P. R., Dong, G., Braiman, A., Isakov, N. (2014). Immunophilins Control T Lymphocyte Adhesion and Migration by Regulating CrkII Binding to C3G. The Journal of Immunology, 193(8), 3966–3977. [CrossRef]
  • Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., Bernardi, P. (1996). Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel. Journal of Biological Chemistry, 271(4), 2185–2192. [CrossRef]
  • Ortiz, G. G., Pacheco-Moisés, F. P., Bitzer-Quintero, O. K., Ramírez-Anguiano, A. C., Flores-Alvarado, L. J., Ramírez-Ramírez, V., … Torres-Sánchez, E. D. (2013). Immunology and oxidative stress in multiple sclerosis: Clinical and basic approach. Clinical and Developmental Immunology. [CrossRef]
  • Park, I., Londhe, A. M., Lim, J. W., Park, B. G., Jung, S. Y., Lee, J. Y., Lim, S. M., No, K. T., Lee, J., Pae, A. N. (2017). Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction. Journal of Computer-Aided Molecular Design, 31(10), 929–941. [CrossRef]
  • Roydon Price, E., Zydowsky, L. D., Jin, M., Hunter Baker, C., Mckeon, F. D., Walsh, C. T. (1991). Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proceedings of the National Academy of Sciences of the United States of America, 88(5), 1903–1907. [CrossRef]
  • Smith, K. J., Lassmann, H. (2002). The role of nitric oxide in multiple sclerosis. Lancet Neurology, 1(4), 232–241. [CrossRef]
  • Spik, G., Haendler, B., Delmas, O., Mariller, C., Chamoux, M., Maes, P., Tartar, A., Montreuil, J., Stedman, K., Kocher, H. P., Keller, R., Hiestand, P. C., Movva, N. R. (1991). A novel secreted cyclophilin-like protein (SCYLP). Journal of Biological Chemistry, 266(17), 10735–10738. [CrossRef]
  • Tanveer, A., Virji, S., Andreeva, L., Totty, N. F., Hsuan, J. J., Ward, J. M., Crompton, M. (1996). Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. European Journal of Biochemistry, 238(1), 166–172. [CrossRef]
  • Trott, O., Olson, A. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. [CrossRef]
  • Wolinsky MS Study Group. (1990). Efficacy and toxicity of cyclosporine in chronic progressive multiple sclerosis: A randomized, double‐blinded, placebo‐controlled clinical trial. In Annals of Neurology (Vol. 27, Issue 6, pp. 591–605). [CrossRef]
  • Yurchenko, V., Constant, S., Eisenmesser, E., Bukrinsky, M. (2010). Cyclophilin-CD147 interactions: A new target for anti-inflammatory therapeutics. Clinical and Experimental Immunology, 160(3), 305–317. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi