Suda Zeytin Yağı Model Emülsiyonunun Fiziksel Özellikleri: Su ve Yağ Fazı Konsantrasyonu ile Homojenizasyon Tiplerinin Etkisi

Bu çalışmada enkapsülasyon denemesi için farklı yağ içeriklerine %30, %40, %50 w/w kuru temelde sahip su içinde zeytinyağı emülsiyonları hazırlanmıştır. Kaplama materyali olarak farklı oranlardaki peyniraltı suyu protein izolatı ve maltodekstrin %30, %40, %50 w/w kuru temelde , stabilizatör olarak %1 oranında Tween 20 kullanılmıştır. Emülsiyonlar klasik ve ultrasonik homojenizatör ile hazırlanmıştır. Emülsiyon stabilitesi, reolojik özellikler, damlacık çapı ve mikroskopisi üzerine kuru madde içeriğinin, enkapsüle edici ajanları içeren sulu fazın kompozisyonu ve yağ miktarının etkisi incelenmiştir. Sulu fazında maltodekstrin içeren emülsiyonlar daha viskoz yapıda bulgulanmış ve emülsiyon stabilitesi bakımından daha iyi sonuç vermiştir. Ayrıca emülsiyonların viskozitesi kuru maddenin artışı ile artmış, yağ içerinin artışı ile azalmıştır. Ultrasonik homojenizasyon yöntemi ile hazırlanan emülsiyonların damlacık çapı 0.390-1.974 µm klasik yöntem ile hazırlananlara 1.003-5.205 µm oranla daha düşük bulunmuştur

Physical Properties of Olive Oil in Water Model Emulsion: Effect of Aqueous and Oil Phase Concentration and Homogenization Types

In this study, olive oil in water emulsions with different oil contents 30, 40 and 50% w/w on dry matter basis were prepared for further encapsulation processes. Whey protein isolate and maltodextrin were used as encapsulating agents at different dry matter contents 30, 40 and 50% , and Tween 20 was used at 1% as a stabilizer. Emulsions were produced by a rotor-stator classic or an ultrasonic homogenizer. The effect of dry matter content, composition of aqueous phase containing encapsulating agents and oil content on the emulsion stability, rheological properties, droplet size, and microscopy images were determined. The water phase of emulsions containing maltodextrin was more viscous that resulted in better emulsion stability. Moreover the viscosity of emulsions increased with increasing dry matter content and decreasing oil content. The droplet size of emulsions D[4,3] prepared by ultrasonic homogenization were lower 0.390-1.974 µm than that by classic homogenization 1.003-5.205 µm

___

  • [1] Friberg S., Larsson K., 1997. Food Emulsions, 3rd ed., New York: Marcel Dekker.
  • [2] Krog M.J., Riisom T.H., Larsson K., 1983. Applications in the food industry. In: Becker P and Dekker M (Eds.), Encyclopedia of Emulsion Technology Volume 2 (chapter 5), New York: 270 Madison Ave.
  • [3] Jaynes E.N., 1983. Applications in the food industry. In: Becker P and Dekker M (Eds.), Encyclopedia of Emulsion Technology Volume 2 (chapter 6), New York: 270 Madison Ave.
  • [4] Dickinson E., Stainsby G., 1982. Colloids in Foods. London: Applied Science Publishers, pp. 107-195.
  • [5] Swaisgood H.E.,1996. Characteristics of milk. In: Fox PF (Eds.), Food Chemistry 3rd ed. New York: Marcel Dekkel, Inc., pp. 841-878.
  • [6] McClements D.J., 1999. Food Emulsions; Principles, Practice, and Techniques. Bocs Raton, FL: CRC Press.
  • [7] Pal R., Yan Y., Masliyah J.H., 1992. Rheology of emulsions. In: Schramm LL (Eds.), Emulsions: Fundamentals and Applications in the Petroleum Industry Washington, D.C.: American Chemical Society, pp. 131-170.
  • [8] Turchiuli C., Lemarié N., Cuvelier M.E., Dumoulin E., 2012. Production of fine emulsions at pilot scale for oil compounds encapsulation. Journal of Food Engineering 115(4): 452-458.
  • [9] Dalmazzone C., 2000. Génération mécanique des emulsions. Oil & Gas Science and TechnologyRevue De L Institut Francais Du Petrole 55(3): 281- 305.
  • [10] Abismail B., Canselier J.P., Wilhelm A.M., Delmas H., Gourdon C., 2000. Emulsification processes: On-line study by multiple light scattering measurements. Ultrasonics Sonochemistry 7: 187- 192.
  • [11] Mirhosseini H., Tan C.H., Hamid N.S., Yusof S., 2008. Optimization of the contents of arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocolloids 22: 1212-1223.
  • [12] Dickinson E., 1992. Introduction to Food Colloids. Oxford: Oxford University Press.
  • [13] Bergenstahl G., 1997. Physiochemical aspects of an emulsifier functionality, food emulsifiers and their applications. In: Hasenhuettl G.L., Hartel R.W. (Eds.), Food Emulsifiers and Their Applications. New York: Chapman and Hall, pp. 173-194.
  • [14] Arshady R., George M.H., 1993. Suspension, dispersion, and interfacial polycondensation: A methodological survey. Polymer Engineering and Science 33(14): 865-876.
  • [15] Soottitantawat A., Yoshii H., Furuta T., Ohkawara M., Linko P.,2003. Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. Journal of Food Science 68: 2256-2262.
  • [16] Soottitantawat A., Bigeard F., Yoshii H., Furuta T., Ohkawara M., Linko P., 2005. Influence of emulsion and powder size on the stability of encapsulated Dlimonene by spray drying. Innovative Food Science & Emerging Technologies 6: 107-114.
  • [17] Bhandari B.R., Dumoulin H.M.J., Richard H.M.J., Noleau I., Lebert A.M., 1992. Flavor encapsulation by spray drying: Application to citral and linalyl acetate. Journal of Food Science 57: 217-221.
  • [18] Dickinson E., 1993. Protein–polysaccharide interactions in food colloids. In: Dickinson E., Walstra P. (Eds.), Food Colloids and Polymers: Stability and Mechanical Properties. Cambridge: Royal Society of Chemistry, pp. 77-93.
  • [19] Jafari S.H., Assadpoor E., He Y., Bhandari B., 2008. Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids 22: 1191-1202.
  • [20] Thies C., 2004. Microencapsulation: What it is and purpose. In: Vilstrup P (Eds.), Microencapsulation of Food Ingredients Leatherhead, UK: Leatherhead Publishing, (pp 1-30).
  • [21] Rosenberg M., Kopelman I.J., Talmon Y., 1990. Factors affecting retention in spray-drying microencapsulation of volatile materials. Journal of Agricultural and Food Chemistry 38(5): 1288-1294.
  • [22] Da Fonseca V.C., Haminiuk C.W.I, Izydoro D.R., Waszczynskyj N., Scheer A.P., Sierakowsk M.R., 2009. Stability and rheological behaviour of salad dressing obtained with whey and different combinations of stabilizers. International Journal of Food Science and Technology 44: 777-783.
  • [23] Laine P., Toppinen E., Kivelä R., Taavitsainen V., Knuutila O., Sontag-Strohm T., Jouppila K., Loponen J., 2011. Emulsion preparation with modified oat bran: Optimization of the emulsification process for microencapsulation purposes. Journal of Food Engineering 104: 538-547.
  • [24] Klinkesorn U., Sophanodora P., Chinachoti P., McClements D.J., 2004. Stability and rheology of corn oil-in-water emulsions containing maltodextrin. Food Research International 37: 851-859.
  • [25] Tadros T., 2004. Application of rheology for assessment and prediction of the long term physical stability of emulsions. Advances in Colloid and Interface Science 108–109, 227–258.
  • [26] Abismail B., Canselier J.P., Wilhelm A.M., Delmas H., Gourdon C., 1999. Emulsification by ultrasound: Drop size distribution and stability. Ultrasonics Sonochemistry 6: 75-83.
  • [27] Papalamprou E.M., Makri E.A., Kiosseoglou V.D., Doxastakis G.I., 2005. Effect of medium molecular weight xanthan gum in rheology and stability of oilin- water emulsions stabilized with legume proteins. Journal of the Science of Food and Agriculture 85: 1967–1973.
  • [28] Sun C., Gunasekaran S., 2009).Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids 23(1): 165-174
  • [29] Sun C., Gunasekaran S., Richards M.P., 2007. Effect of xanthan gum on physicochemical properties of whey protein isolated stabilized oil-inwater emulsions. Food Hydrocolloids 21(4): 555- 564.
  • [30] Dickinson E., Golding M., 1997. Rheology of sodium caseinate stabilized oil-in water emulsions. Journal of Colloid and Interface Science 191: 166- 176.
  • [31] Dokic P.P., Dokic L.P., Sovilj V.J., Katona J.M., 2004. Influence of maltodextrin dextrose equivalent value on rheological and dispersion properties of sunflower oil in water emulsions. APTEFF 35: 17- 24.
  • [32] Hayati I.N., Man Y.B.C., Tan C.P., Aini I.N., 2009. Droplet characterization and stability of soybean oil/palm kernel olein O/W emulsions with the presence of selected polysaccharides. Food Hydrocolloids 23: 233-243.
  • [33] Walstra P., 1983. Formation of emulsion. In: Becker P and Dekker M (Eds.), Encyclopedia of Emulsion Technology Volume 1 New York, pp. 87-127.
  • [34] Schmidt H.W., 1985. Untersuchungen zur ultraschall-homogenisierung von milchproben. Lebensmittelindustr 32: 173-175.
  • [35] Martinez F.E., Desai I.D., Davidson A.G.F., Nakai S., Radcliffe A., 1987. Ultrasonic homogenization of expressed human milk to prevent fat loss during tube feeding. Journal of Pediatric Gastroenterology and Nutrition 6:593-597.
  • [36] Christensen K.L., Pedersen G.P., Kristensen H.G., 2001. Preparation of redispersible dry emulsions by spray drying. International Journal of Pharmaceutics 212: 187-194.