Proteaz ve Biyopestisit Üretimlerinin Eşzamanlı Optimizasyonu: Endüstriyel Bakış Açısında Bir Durum Çalışması

Bacillus sphaericus biyopestisit olup, kirli alanlar ve UV ışık altı gibi zorlu koşullarda bile böcekler üzerinde yüksek etkiye sahiptir. Bu biyoaktivitesiyle beraber, proteaz enzimi de üretir. Bu çalışmada, mısır ıslatma şurubu (MIS) ve melastan oluşan ortam bileşenlerinin yüzey yanıt yönteminden (YYY) merkezi birleşik dizayn ile optimize edilmesi çalışılmıştır. Optimizasyon, dört farklı senaryo üzerinden yapılmıştır. Bunlar, sadece biyopesitisitin ve proteazın optimizasyonu (Senaryo 1 ve 2), proteazın yan ürün olduğu biyopesitist optimizasyonu (Senaryo 3) ve biyopesitisitin yan ürün olduğu proteaz optimizasyonu (Senaryo 4). Eşzamanlı optimizasyonlar, yüksek miktarlarda ürünlerin elde edilmesinde başarılı sonuçlar vermemiştir. Ancak, üretim hedefi yan ürünlü üretim şeklinde olursa, en uygun üretim koşullarına ulaşılabilir. Aynı zamanda, endüstriyel bakış açısıyla incelenecek olursa, Senaryo 1, büyük ölçekli üretim sistemi açısından uygulanabilir tek üretim yoludur.

Simultaneous Optimization of Protease and Biopesticide Productions: A Case Study with Industrial Perspective

Bacillus sphaericus is a biopesticide that is highly effective for the control of mosquitos under harsh conditions such as polluted areas and UV light. In addition to its bioactivity, it produces proteases. In this present study, the composition of media comprising corn steep liquor (CSL) and molasses was optimised using response surface methodology (RSM) with a central composite design (CCD). Four different scenarios were arranged involving sole biopesticide and protease optimization (Scenarios 1 and 2), biopesticide optimization with protease as a by-product (Scenario 3) and protease optimization with biopesticide as a by-product (Scenario 4). The optimization of the simultaneous production of biopesticide and protease was not satisfactory to obtain large amounts of both products; however, when the production aim was a sole production with a by-product, optimal working conditions could be achieved. Also, according to industrial view, Scenario 1 is the only possible process for large scale systems.

___

  • [1] Copping, L.G., Menn, J.J., 2000. Biopesticides: a review of their action, applications and efficacy. Pest Management Science 56: 651-676.
  • [2] Senthil-Nathan, S., 2015. A Review of Biopesticides and Their Mode of Action Against Insect Pests. In: Environmental Sustainability: Role of Green Technologies, Edited by P. Thangavel, G. Sridevi G. Springer India, New Delhi, 49-63p.
  • [3] Tripathi, A., Hadapad, A.B., Hire, R.S., Melo, J.S., D'Souza, S.F., 2013. Polymeric macroporous formulations for the control release of mosquitocidal Bacillus sphaericus ISPC-8. Enzyme and Microbial Technology 53: 398-405.
  • [4] Zhang, W., Crickmore, N., George, Z., Xie, L., He, Y.Q., Li, Y., Tang, J.L., Tian, L., Wang, X., Fang, X., 2012. Characterization of a new highly mosquitocidal isolate of Bacillus thuringiensis-An alternative to Bti? Journal of Invertebrate Pathology 109: 217-222.
  • [5] El-Bendary, M.A., 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. Journal of Basic Microbiology 46: 158-170.
  • [6] Sharma, M.P., Sharma, A.N., Hussaini, S.S., 2011. Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status - a mini review. Archiv Fur Phytopathologıe Und Pflanzenschutz-Archives Of Phytopathology And Plant Protection 44: 855- 870.
  • [7] Zhuang, L., Zhou, S., Wang, Y., Chang, M., 2011. Mosquito biolarvicide production by sequential fermentation with dual strains of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus using sewage sludge. Bioresource Technology 102: 1574-1580.
  • [8] Çalik, G., Pehlivan, N., Kalender, N., Özdamar, T.H., Çalik, P., 2003. Utilization of pretreated molasses for serine alkaline protease production with recombinant Bacillus species. Chemical Engineering Communications 190: 630-644.
  • [9] Chu, W-H., 2007. Optimization of extracellular alkaline protease production from species of Bacillus. Journal of Industrial Microbiology and Biotechnology 34: 241-245.
  • [10] Genckal, H., Tari, C., 2006. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme and Microbial Technology 39: 703-710.
  • [11] Jackson, M.A., Labeda, D.P., Becker, L.A., 1995. Enantioselective hydrolysis of ethyl 2- hydroxyalkanoates by an extracellular esterase from a Bacillus sphaericus strain. Enzyme and Microbial Technology 17: 175-179.
  • [12] Kumar, C.G., Takagi, H., 1999. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances 17: 561-594.
  • [13] Singh, J., Vohra, R., Sahoo, D., 2001. Purification and characterization of two extracellular alkaline proteases from a newly isolated obligate alkalophilic Bacillus sphaericus. Journal of Industrial Microbiology and Biotechnology 26: 387- 393.
  • [14] Singh, J., Vohra, R.M., Sahoo, D.K., 2004. Enhanced production of alkaline proteases by Bacillus sphaericus using fed-batch culture. Process Biochemistry 39: 1093-1101.
  • [15] El-Bendary, M.A., Moharam, M.E., Foda, M., 2008. Efficient mosquitocidal toxin production by Bacillus sphaericus using cheese whey permeate under both submerged and solid state fermentations. Journal of Invertebrate Pathology 98: 46-53.
  • [16] Lin, S.S., Dou, W.F., Xu, H.Y., Li, H.Z., Xu, Z.H., Ma, Y.H., 2007. Optimization of medium composition for the production of alkaline ?- mannanase by alkaliphilic Bacillus sp. N16-5 using response surface methodology. Applied Microbiology and Biotechnology 75: 1015-1022.
  • [17] Shi, F., Zhu, Y., 2007. Application of statisticallybased experimental designs in medium optimization for spore production of Bacillus subtilis from distillery effluent. BioControl 52: 845-853.
  • [18] Kazi, F.K., Fortman, J.A., Anex, R.P., Hsu, D.D., Aden, A., Dutta, A., Kothandaraman, G., 2010. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89: 20-28.
  • [19] Box, G.E.P., Wilson, K.B., 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society: Series B Metholody 13: 1-45.
  • [20] Baş, D., Boyacı, İ.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering 78: 836- 845.
  • [21] Nikerel, İ.E., Öner, E., Kırdar, B., Yıldırım, R., 2006. Optimization of medium composition for biomass production of recombinant Escherichia coli cells using response surface methodology. Biochemical Engineering Journal 32: 1-6.
  • [22] Strnad, J., Brinc, M., Spudi?, V., Jelnikar, N., Mirnik, L., ?arman, B., Kravanja, Z., 2010. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels. Biotechnology Progress 26: 653-663.
  • [23] Tanyildizi, M.S., Özer, D., Elibol, M., 2005. Optimization of ?-amylase production by Bacillus sp. using response surface methodology. Process Biochemistry 40: 2291-2296.
  • [24] Sahin, F., Duman, G., Yazıcı, M., 2013. Novel bacterial strains for biological control of mosquitoes. Patent No. WO2013005176 A1 2013.
  • [25] Küçükaşik, F., Kazak, H., Güney, D., Finore, I., Poli, A., Yenigün, O., Nicolaus, B., Öner, E.T., 2011. Molasses as fermentation substrate for levan production by Halomonas sp. Applied Microbiology and Biotechnology 89: 1729-1740.
  • [26] Üstün, Ö., Öngen, G., 2012. Production and separation of dipeptidyl peptidase IV from Lactococcus lactis: scale up for industrial production. Bioprocess and Biosystems Engineering 35: 1417-1427.
  • [27] Kunitz, M., 1947. Crystalline soybean trypsin inhibitor II. General properties. Journal of General Physiology 30: 291-310.
  • [28] Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B Metholody 26: 211-252.
  • [29] Afify, A., Aboul-Soud, M., Foda, M., Sadik, M., Asar, A., Kahil, T., Al-Khedhairy, A., 2009. Production of alkaline protease and larvicidal biopesticides by an Egyptian Bacillus sphaericus isolate. African Journal of Biotechnology 8: 3864- 3873.
  • [30] Surendran, A., Vennison, S.J., Ravikumar, S., Ali, M.S. 2011. Optimization of alkaline protease production Bacillus sphaericus SBS4 by soil bacterium. Journal of Pharmaceutical Research 4: 1517-1519.
  • [31] Ipsos Consumer Panel Database, www.ipsos.com.tr, 2016.
  • [32] Kaymak, S., Serim, A.T., 2015. Research and development in pesticide sector. Fruit Science 2(1): 27-34.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi