Koşullandırılmış Kalem Grafit Elektrot Kullanılarak Vanilinin Voltammetrik Tayini

Bu çalışmada, bir elektrot malzemesi olarak kurşun kalem ucu kullanılarak ticari gıda ürünlerinde vanilin tayini için hassas bir voltammetrik yöntem önerilmiştir. Vanilinin, önceden oksitlenmiş grafit kalem elektrotu (pre-oxidized pencil graphite electrode, p-PGE) kullanılarak pH 8.0 Britton Robinson tampon çözeltisinde kaydedilen döngüsel voltammogramlarında, yaklaşık 520 mV’da (Ag/AgCl elektroduna karşı) vanilinin yükseltgenmesine atfedilen keskin bir pik gözlenmiştir. Daha sonra, vanilinin p-PGE’de yükseltgenmesine dayalı voltammetrik vanilin tayini, optimize koşullar altında diferansiyel puls voltammetri (DPV) tekniği kullanılarak gerçekleştirildi. DPV sonuçları, vanilinin yükseltgenmesine ait pik akımının, 0,16 µM (3Sb’ye dayanarak) gözlenebilme sınırı ile birlikte 0,5-10,0 µM vanilin derişim aralığında doğrusal olarak arttığını göstermektedir. Çalışmanın son aşamasında, bu voltammetrik yöntem vanilya şurubu örneklerinde vanilin tayinine uygulanmıştır. Elde edilen sonuçların numune şişesindeki etiketli değerler ile iyi bir uyum içinde olduğu tespit edilmiştir.

Voltammetric Determination of Vanillin Using a Pretreated Pencil Graphite Electrode

In this study, a sensitive voltammetric method for the determination of vanillin in commercial food products was proposed using a pencil lead as an electrode material. In the cyclic voltammograms of vanillin recorded in pH 8.0 Britton Robinson buffer at the pre-oxidized pencil graphite electrode (p-PGE), a sharp peak was observed at about 520 mV (vs. Ag / AgCl electrode) attributed to the oxidation of vanillin. Subsequently, the voltammetric determination of vanillin based on its oxidation at p-PGE was carried out using the differential pulse voltammetry (DPV) technique under optimized conditions. DPV results showed that the oxidation peak current of vanillin increased linearly in the concentration range of 0.5 to 10.0 µM vanillin with a detection limit of 0.16 µM (based on 3Sb). In the final step, this voltammetric method was applied to the determination of vanillin in vanilla syrup samples. Results were in good agreement with the values indicated on the labels of samples.

___

  • [1] Sinha, A.K., Sharma, U.K., Sharma, N. (2008). A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299-326.
  • [2] Bezerra, D.P., Soares, A.K.N., De Sousa, D.P. (2016). Overview of the role of vanillin on redox status and cancer development. Oxidative Medicine and Cellular Longevity 2016, Article ID 9734816, 9 pages.
  • [3] Rasoamandrary, N., Fernandes, A.M., Bashari, M., Masamba, K., Xuemin, X. (2013). Improved extraction of vanillin 4-hydroxy-3-methoxybenzaldehyde from cured vanilla beans using ultrasound-assisted extraction: A comparison of ultrasound-assisted and hot water bath extraction. Akademik Gıda, 11(1), 6-12.
  • [4] Rao, S.R., Ravishankar, G.A. (2000). Vanilla flavour: production by conventional and biotechnological routes. Journal of the Science of Food and Agriculture, 80, 289-304.
  • [5] Sinha, A.K., Verma, S.C., Sharma, U.K. (2007). Development and validation of an RP‐HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia. Journal of Separation Science, 30, 15-20.
  • [6] De Jager, L.S., Perfetti, G.A., Diachenko, G.W. (2008). Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chemistry, 107, 1701-1709.
  • [7] Wang, Z., Zeng, G., Wei, X., Ding, B., Huang, C., Xu, B. (2016). Determination of vanillin and ethylvanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatographymass spectrometry. Food Analytical Methods, 9, 3360-3366.
  • [8] Santos, I.C., Smuts, J., Schug, K.A. (2017). Rapid profiling and authentication of vanilla extracts using gas chromatography-vacuum ultraviolet spectroscopy. Food Analytical Methods, 10, 4068- 4078.
  • [9] Li, R., Jiang, Z., Mao, L., Shen, H. (1998). Adsorbed resin phase spectrophotometric determination of vanillin or/and its derivatives. Talanta, 47, 1121- 1127.
  • [10] Zhao, J., Xia, H., Yu, T., Jin, L., Li, X., Zhang, Y., Shu, L., Zeng, L., He, Z. (2018). A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates. PLoS One, 13(4), e0194010, 1-11.
  • [11] Alpar, N., Yardım, Y., Sentürk, Z. (2018). Selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in foods and beverages by adsorptive stripping voltammetry using a cathodically pretreated boron-doped diamond electrode. Sensors and Actuators B, 257, 398-408.
  • [12] Durán, G.M., Llorent-Martínez, E.J., Contento, A.M., Ríos, Á. (2018). Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchimica Acta, 185, 204-212.
  • [13] Karabiberoglu, S.U. Kocak, C.C. (2018). Voltammetric determination of vanillin in commercial food products using overoxidized poly(pyrrole) filmmodified glassy carbon electrodes. Turkish Journal of Chemistry, 42, 291-305.
  • [14] Murtada, K., Jodeh, S., Zougagh, M., Rios, A. (2018). Development of an aluminum doped TiO2 nanoparticles-modified screen printed carbon electrode for electrochemical sensing of vanillin in food samples. Electroanalysis, 30, 969-974.
  • [15] Ning, J., He, Q., Luo, X., Wang, M., Liu, D., Wang, J., Liu, J., Li, G. (2018). Rapid and sensitive determination of vanillin based on a glassy carbon electrode modified with Cu2O-electrochemically reduced graphene oxide nanocomposite film. Sensors, 18, 2762 (17 pages)
  • [16] Cheraghi, S., Taher, M.A., Karimi-Maleh, H. (2017). Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. Journal of Food Composition and Analysis, 62, 254-259.
  • [17] Sivakumar, M., Sakthivel, M., Chen, S.M. (2017). Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid Interface Science, 490, 719-726.
  • [18] Wu, W., Yang, L., Zhao, F., Zeng, B. (2017). A vanillin electrochemical sensor based on molecularly imprinted poly(1-vinyl-3-octylimidazole hexafluoride phosphorus)−multi-walled carbon nanotubes@polydopamine–carboxylsingle-walled carbon nanotubes composite. Sensors and Actuators B, 239,481-487.
  • [19] Abbasghorbani, M. (2017). Electrochemical determination of vanillin in food samples using MgO/SWCNTs-ionic liquid modified electrode. International Journal of Electrochemical Science, 12, 11656-11665.
  • [20] Deng, P., Xu, Z., Zeng, R., Ding, C. (2015). Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene– polyvinylpyrrolidone composite film. Food Chemistry, 180, 156-163.
  • [21] Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. (2015). Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27, 465-472.
  • [22] Wang, X., Luo, C., Li L., Duan, H. (2015). An ultrasensitive molecularly imprinted electrochemical sensor based on graphene oxide/carboxylated multiwalled carbon nanotube/ionic liquid/gold nanoparticle composites for vanillin analysis. RSC Advances, 5, 92932-92939.
  • [23] Shang, L., Zhao, F., Zeng, B. (2014). Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode. Food Chemistry, 151, 53-57.
  • [24] Zhao, Y., Du, Y., Lu, D., Wang, L., Ma, D., Ju, T., Wu, M. (2014). Sensitive determination of vanillin based on an arginine functionalized graphene film. Analytical Methods, 6, 1753-1758.
  • [25] Zheng, D., Hu, C., Gan, T., Dang, X., Hu, S. (2010). Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sensors and Actuators B, 148, 247- 252.
  • [26] Bettazzi, F., Palchetti, I., Sisalli, S., Mascini, M. (2006). A disposable electrochemical sensor for vanillin detection. Analytica Chimica Acta, 555, 134- 138.
  • [27] Dilgin D.G., Karakaya, S. (2016). Differential pulse voltammetric determination of acyclovir in pharmaceutical preparations using a pencil graphite electrode. Materials Science and Engineering: C, 63, 570-576.
  • [28] Dilgin, D.G., Ertek, B., Dilgin, Y. (2018). A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene bluemodified pencil graphite electrode. Journal of the Iranian Chemical Society, 15(6), 1355-1363.
  • [29] Dilgin, D.G. (2018). Determination of calcium dobesilate by differential pulse voltammetry at a disposable pencil graphite electrode. Analytical Letters, 51(1-2), 186-197.
  • [30] Özcan, A., Gürbüz, M., Özcan, A.A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta, 187, 125-132.
  • [31] Baig, N., Rana, A., Kawde, A.N. (2018). Modified electrodes for selective voltammetric detection of biomolecules. Electroanalysis, 30, 2551-2574.
  • [32] Torrinha, A., Amorim, C.G., Montenegro, M., Araujo, A.N. (2018). Biosensing based on pencil graphite electrodes. Talanta, 190, 235-247.
  • [33] Wang, J., Kawde, A.N., Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5-7.
  • [34] Ainscough, E.W., Brodie, A.M. (1990). The determination of vanillin in vanilla extract. Journal of Chemical Education, 67(12), 1070-1071.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi