Dondurarak Kurutma İşleminin Karayemiş ve Kivinin Fiziksel ve Antioksidan Özellikleri Üzerine Etkisi

Dondurarak kurutma besleyici ve sıcaklıktan kolay etkilenebilen gıda ürünlerinin korunmasında kullanılan yeni bir metottur. Bu çalışmada, dondurarak kurutmanın etkilerini gözlemlemek için yüksek askorbik asit (kivi) ve fenolik bileşen içeren (karayemiş) iki tip meyve seçilmiştir. Kivi ve karayemiş meyvelerinin dondurarak kurutulmasından önce ve sonra askorbik asit içeriği, toplam fenolik madde içeriği ve antioksidan kapasiteleri belirlenmiştir. Kivi ve karayemiş meyvesi için askorbik asit içerikleri sırasıyla 205.14±21.33 ve 3.00±1.02 mg/100 g kuru madde olarak bulunmuştur. Kivi ve karayemiş meyvesi için toplam fenolik madde içerikleri sırasıyla 262.66±19.97 ve 1056.78±90.73 mg GAE/100 g kuru madde olarak belirlenmiştir. Her iki meyve için de dondurarak kurutma işlemi ile birlikte antioksidan kapasiteleri artarken, askorbik asit içerikleri değişmemiştir. Toplam fenolik bileşen miktarında dondurarak kurutulmuş karayemiş meyvesinde önemli ölçüde artış olmuştur ancak kivi meyvesinde olmamıştır. Renk değerleri her iki meyve için dondurarak kurutma işlemi ile birlikte değişmiştir, aydınlık ve sarılık değerleri önemli ölçüde artmıştır (p

Effects of Freeze-Drying Process on Antioxidant and Some Physical Properties of Cherry Laurel and Kiwi Fruits

Freeze-drying is a trend method for the preservation of thermosensitive and nutritive food products. In this study, twodifferent fruits, kiwi fruit with high ascorbic acid content and cherry laurel fruit with high phenolic content, wereselected to study the freeze-drying effect on these compounds. Ascorbic acid content, total phenolic content andantioxidant capacity of kiwi and cherry laurel fruits were determined before and after freeze-drying process. Ascorbicacid content of kiwi and cherry laurel fruit were 205.14±21.33 and 3.00±1.02 mg/100 g dry matter, respectively. Totalphenolic content of kiwi and cherry laurel fruits were 262.66±19.97 and 1056.78±90.73 mg GAE/100 g dry matter,respectively. Ascorbic acid contents did not change, while antioxidant capacities increased by freeze-drying processfor both fruits. The total phenolic content of cherry laurel fruits increased significantly after freeze-drying in contrast tothe total phenolic content of kiwi fruits. Color values changed with freeze-drying, the lightness and yellowness valuesincreased significantly for both fruits (p

___

  • [1] Kalt, W., Forney, C.F., Martin, A., Prior, R.L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47, 4638-4644.
  • [2] Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70, R11- R19.
  • [3] Harris, W.S. (1992). The prevention of atherosclerosis with antioxidants. Clinical Cardiology, 5, 636-640.
  • [4] Bazzano, L.A., He, J., Ogden, L.G., Loria, C.M., Vupputuri, S., Myers, L., Whelton, P.K. (2002). Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first national health and nutrition examination survey epidemiologic follow-up study. American Journal of Clinical Nutrition, 76, 93-99.
  • [5] Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., Colditz, G.A., Rosner, B., Spiegelman, D., Willett, W.C. (2004). Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute, 96, 1577-1584.
  • [6] Karadeniz, F., Burdurlu, H.S., Koca, N., Soyer, Y. (2005). Antioxidant activity of selected fruits and vegetables grown in Turkey. Turkish Journal of Agriculture and Forestry, 29, 297-303.
  • [7] Al-Fartosy, A.J. (2011). Antioxidant properties of methanolic extract from Inula graveolens L. Turkish Journal of Agriculture and Forestry, 35, 591-596.
  • [8] Meng, F., Zhong, G., Xu, X., Wu, Y. (2015). Functional ingredients analysis for the leaves of Premna ligustroides Hemsl. and the antioxidant activity evaluation for its ethanol extracts. Food Science and Technology Research, 21(6), 847- 855.
  • [9] Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., Niu, Y. (2016). A comparative study on total anthocyanin content, composition of anthocyanidin, total phenolic content and antioxidant activity of pigmented potato peel and flesh. Food Science and Technology Research, 22(2), 219-226.
  • [10] Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66, 401-436.
  • [11] Padayatty, S.J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.H., Chen, S., Corpe, C., Dutta, A., Dutta, S.K., Levine, M. (2003). Vitamin C as an antioxidant: evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22, 18-35.
  • [12] Cassano, A., Figoli, A., Tagarelli, A., Sindona, G., Drioli, E. (2006). Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination, 189, 21-30.
  • [13] Rush, E., Ferguson, L.R., Cumin, M., Thakur, V., Karunasinghe, N., Plank, L. (2006). Kiwifruit consumption reduces DNA fragility: a randomized controlled pilot study in volunteers. Nutrition Research, 26, 197-201.
  • [14] Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107, 282-288.
  • [15] Celik, F., Ercisli, S., Yilmaz, S.O., Hegedus, A. (2011). Estimation of certain physical and chemical fruit characteristics of various cherry laurel (Laurocerasus officinalis Roem.) genotypes. Hortscience, 46, 924-927.
  • [16] Kolayli, S., Küçük, M., Duran, C., Candan, F., Dinçer, B. (2003). Chemical and antioxidant properties of Laurocerasus officinalis Roem. (cherry laurel) fruit grown in the Black Sea region. Journal of Agricultural and Food Chemistry, 51, 7489-7494.
  • [17] Lopez-Quiroga, E., Antelo, L.T., Alonso, A.A. (2012). Time-scale modeling and optimal control of freeze–drying. Journal of Food Engineering, 111, 655-666.
  • [18] Babić, J., Cantalejo, M.J., Arroqui, C. (2009). The effects of freeze-drying process parameters on Broiler chicken breast meat. LWT- Food Science and Technology, 42, 1325-1334.
  • [19] George, J.P., Datta, A.K. (2002). Development and validation of heat and mass transfer models for freeze-drying of vegetable slices. Journal of Food Engineering, 52, 89-93.
  • [20] Kola, O. (2010). Physical and chemical characteristics of the ripe pepino (Solanum muricatum) fruit grown in Turkey. Journal of Food, Agriculture, and Environment, 8(2), 168-171.
  • [21] Wojdyło, A., Oszmiański, J., Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949.
  • [22] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal Agricultural and Food Chemistry, 52, 7970-7981.
  • [23] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28, 25-30.
  • [24] Chen, Q., Li, Z., Bi, J., Zhou, L., Yi, J., Wu, X. (2017). Effect of hybrid drying methods on physicochemical, nutritional and antioxidant properties of dried black mulberry. LWT- Food Science and Technology, 80, 178-184.
  • [25] Kvesitadze, G.I., Kalandiya, A.G., Papunidze, S.G., Vanidze, M.R. (2001). Identification and quantification of ascorbic acid in kiwi fruit by highperformance liquid chromatography. Applied Biochemistry and Microbiology, 37, 215-218.
  • [26] Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal Agricultural and Food Chemistry, 51, 1237-1241.
  • [27] Gumuşay, O.A., Borazan, A.A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162.
  • [28] Chang, C.H., Lin, H.Y., Chang, C.Y., Liu, Y.C. (2006). Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. Journal of Food Engineering, 77, 478-485.
  • [29] Gorinstein, S., Haruenkit, R., Poovarodom, S., Park, Y.S., Vearasilp, S., Suhaj, M., Ham, K.S., Heo, B.G., Cho, J.Y., Jang, H.G. (2009). The comparative characteristics of snake and kiwi fruits. Food and Chemical Toxicology, 47, 1884-1891.
  • [30] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K.K., Tan, S.P., Lianto, F.S., Yong, M.Y. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113, 166-172.
  • [31] Park, Y.S., Ham, K.S., Park, Y.K., Leontowicz, H., Leontowicz, M., Namieśnik, J., Katrich, E., Gorinstein, S. (2016). The effects of treatment on quality parameters of smoothie-type ‘Hayward’kiwi fruit beverages. Food Control, 70, 221-228.
  • [32] Das, A., Raychaudhuri, U., Chakraborty, R. (2012). Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. International Journal of Food Sciences and Nutrition, 63(6), 718-721.
  • [33] Zhang, Z., Lv, G., Pan, H., Wu, Y., Fan, L. (2009). Effects of different drying methods and extraction condition on antioxidant properties of Shiitake (Lentinus edodes). Food Science and Technology Research, 15(5), 547-552.
  • [34] Cui, Z.W., Li, C.Y., Song, C.F., Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26, 1517-1523.
  • [35] Kadam, D.M., Samuel, D.V.K., Chandra, P., Sikarwar, H.S. (2008). Impact of processing treatments and packaging material on some properties of stored dehydrated cauliflower International Journal of Food Science & Technology, 43, 1-14.
  • [36] Demiray, E., Tülek, Y. (2018). Rehydration kinetics of sun-dried eggplants (Solanum melongena L.) at different temperatures. Akademik Gıda, 16(3), 257- 263.
  • [37] Beaudry, C., Raghavan, G.S.V., Ratti, C., Rennie, T.J. (2004). Effect of four drying methods on the quality of osmotically dehydrated cranberries. Drying Technology, 22, 521-539.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi