Tarımsal Atıklardan Selüloz Nanokristallerinin Eldesi, Karakteristik Özellikleri ve Uygulama Alanları

Selüloz nanokristalleri 5-70 nm çapında, 100 nm ile birkaç mikrometre boyutunda, kristallik derecesi yüksek, çubukşeklinde parçacıklar olup, lignoselülozik hammadde kaynaklarından elde edilmektedir. Son yıllarda selüloznanokristallerinin eldesinde, tarım ürünlerinin işlenmesi sırasında ortaya çıkan kök, sap, saman, yaprak ve kabuk vb.atıkların lignoselülozik hammadde kaynağı olarak kullanımının ekonomik ve çevresel nedenlerden dolayı hızkazandığı görülmektedir. Mısır koçanı, şeker kamışı küspesi, pirinç ve buğday samanı vb. tarımsal atıklardan selüloznanokristallerinin eldesi; (i) ön işlemler-yıkama, öğütme (ii) saflaştırma (hemiselüloz ve ligninin uzaklaştırılması) ve safselüloz liflerinin eldesi, (iii) kimyasallarla muamele-asit hidrolizi olmak üzere üç temel adımda gerçekleştirilmektedir.Selüloz nanokristallerin karakteristik özelliklerinin elde edildiği bitkinin türüne, ekstraksiyon koşullarına bağlı olarakdeğiştiği bilinmektedir. Selüloz nanokristalleri kompozit malzemelerin üretiminde sentetik takviye ajanlarına alternatif,malzemenin mekaniksel ve bariyer özelliklerinin geliştirilmesine katkı sağlayan, doğada kendiliğinden bozunan,yenilenebilir bir malzemedir. Bu nedenle gıda ambalaj sektörü, otomotiv ve ilaçbilim başta olmak üzere, endüstrininbirçok dalındaki uygulamalar için sürdürülebilir ve çevre dostu bir malzeme olarak hizmet eder. Bu makalede; tarımsalürünlerden selüloz nanokristallerinin eldesi, hammadde kaynağının karakterizasyon özelliklerine etkisi veuygulamalarının incelendiği çalışmalar incelenmiştir.

Production of Cellulose Nanocrystals from Agricultural Waste, Their Characteristics and Application Areas

Cellulose nanocrystals (CNs) are rod-shaped particles with a high degree of crystallinity that can be measured from 100 nm up to several micrometers, and can have a diameter of between 5 to 70 nm. CNs can be obtained from lignocellulosic raw materials. In recent years, agricultural wastes such as roots, stems, straw, leaf and skin of agricultural products have been used as a lignocellulosic raw material source for the production of CNs. New sources have been significantly increased due to the economic and environmental reasons. The production of CNs from agricultural waste such as corn cob, bagasse, rice and wheat straw, etc. is carried out mostly in three main steps: (i) pretreatment – washing, milling, (ii) purification – the removal of hemicellulose and lignin, and the isolation of pure cellulose fibers, and (iii) chemical treatment (acid hydrolysis). The properties of CNs vary depending on their source and extraction conditions. CNs are edible and self-degradable, and can be used as an alternative to synthetic reinforcing agents in the production of composite materials, while also contributing to the improvement of the mechanical and barrier properties of materials. Therefore, they can be served as a sustainable and environmentally friendly material for various applications in a large number of industrial areas such as food packaging, automobile and pharmaceuticals. In this article, the production of CNs from agricultural products, the effect of raw material sources on the properties of CNs and their applications in different areas are investigated.

___

  • [1] Anonim. (2017). Biyokütle Potansiyeli Olarak Tarımsal Atıklar. http://biyoder.org.tr/?page_num=4589 (Son erişim tarihi; 11.02.2018).
  • [2] Ertuğrul, B., Güler, T. (2014). Biyokütle enerjisi potansiyelimiz. Sakarya Ticaret Borsası, 49, 10-11.
  • [3] Baran, A., Çaycı, G. ve İnal, A. (1995). Farklı tarımsal atıkların bazı fiziksel ve kimyasal özellikleri. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi, 1(2-3), 169-172.
  • [4] Bahçegül, E. (2011). Tarımsal atıkların çevre dostu plastiklere dönüşümü. Bilim ve Teknik, 521, 68-74.
  • [5] Huang, C., Han., L., Liu, X., Ma, L. (2011). The rapid estimation of cellulose, hemicellulose, and lignin contentsin rice straw by near infrared spectroscopy. Energy Sources, 33, 114–120.
  • [6] Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84, 331-339.
  • [7] Balea, A., Meroya, N., Fuente, E., Delgado-Aguilar, M., Mutje, P., Blonco, A., Negro, C. (2016). Valorization of corn stalk by the production of cellulose nanofibers to improve recycled paper properties. BioResources, 11(2), 3416-343.
  • [8] El-TayebI, T.S., AbdelhafezI, A.A., Ali, S.H., Ramadan, E.M. (2012). Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian Journal of Microbiology, 1523-1525.
  • [9] Liu, R., Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12, 25-34.
  • [10] Li, L., Zhao, L.. (2015). Nature cellulose fibre extracted from different cotton stalk sections by degumming. Fibres & Textiles in Eastern Europe, 23(6): 37-40.
  • [11] Kopania, E., Wietecha, J., Cienchaska, D. (2012). Studies on ısolation of cellulose fibres from waste plant biomass. Fibres & Textiles in Eastern, 20(96), 167-172.
  • [12] Zhou, L., He, H., Jiang, C., Ma, L., Yu, P. (2014). Cellulose nanocrystals from cotton stalk for reinforcement of poly(vinyl alcohol) composites. Cellulose Chemistry and Technology, 51(1-2), 109- 119.
  • [13] Iwatake, A., Nogi, M., Yano, H. (2008). Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68(9), 2103-2106.
  • [14] Lu, J., Askeland, P., Drzal, L.T. (2008). Surface modification of microfibrillated cellulose for epoxycomposite applications. Polymer, 49, 1285- 1298.
  • [15] Klemm, D., Heublein, B., Fink, H.P., Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-93.
  • [16] Johar, N., Ahmad, I., Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1), 93–99.
  • [17] Lu, P., Xiao, H., Zhang, W.,Gong, G. (2014). Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohydrate Polymers, 111, 524–529.
  • [18] Liu, S., Yu, T., Wu, Y., Li, W., Li, B. (2014). Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances, 4(64), 34134–34143.
  • [19] Stenstad, P., Andresen, M., Tanem, B.S., Stenius, P. (2008). Chemical surface modifications of microfibrillated cellulose. Cellulose, 15, 35-45.
  • [20] Siqueira, G., Bras, J., Dufres, A. (2010). Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2, 728-765.
  • [21] Tozluoğlu, A., Çöpür, Y., Özyürek, Ö., Çıtlak, S. (2015). Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry, 16(2), 203-219.
  • [22] Ng, H.M., Sin, L.T., Tee, T.T., Bee, S.T., Hui, D., Low, C.Y., Rahmat, A.R. (2015). Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composite, 75, 176-200.
  • [23] Kurtuluş, M. (2010). Lignoselülozik materyallerden termokatalitik işlemle suda çözündürülen polisakkaritlerin moleküler yapılarının incelenmesi. Çukurova Üniversitesi Yüksek Lisans Tezi, Adana, 104 s.
  • [24] Hon, D.N.S., Shiraishi, N. (2001). Wood and cellulose chemistry, Marcel Dekker, New York and Basel.
  • [25] Anwar, Z., Gulfraz, M., Irshad, M. 2014. Agroindustrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7, 163- 173.
  • [26] Bulut, Y., Erdoğan, Ü.H. (2011). Selüloz esaslı doğal liflerin kompozit üretiminde takviye materyali olarak kullanımı. The Journal of Textiles and Engineers, 82, 26-35.
  • [27] Adıgüzel, A.O. (2013). Lignoselülozik materyallerden biyoetanol üretimi için kullanılan önmuamele ve hidroliz yöntemleri. Sakarya Üniversitesi Fen Bilimleri Dergisi, 17(3), 381-397.
  • [28] Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R. (2015). Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 22, 935–969.
  • [29] Nascimento, P., Marim, R., Carvalho, G., Mali, S. (2016). Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Materials Research, 19(1), 167-174.
  • [30] Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40, 3941–3994.
  • [31] Hua, K. (2015). Nanocellulose for Biomedical Applications. Modification, Characterisation and Biocompatibility Studies. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1320. 80 pp. Uppsala: Acta Universitatis Upsaliensis.
  • [32] Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65.
  • [33] Csiszar, E., Nagy, S. (2017). A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydrate Polymers, 174, 740–749.
  • [34] Cavaille, J.Y., Ruiz, M.M., Dufresne, A., Gerard, J.F., Graillat, C. (2000). Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Compos Interface, 7, 117–131.
  • [35] Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154- 169.
  • [36] Saxena, I.M., Brown, R.M.J. (2005). Cellulose biosynthesis: current views and envolving concepts. Ann. Bot. 96, 9-21.
  • [37] De Souza Lima, M.M., Borsali, R. (2004). Rodlike cellulose microcrystals: Structure, properties and applications. Macromolecular Rapid Communications, 25, 771-787.
  • [38] Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81, 83-92.
  • [39] Frone, A.N., Panaitescu, D.M., Donescu, D., Spataru, C.I., Radovici, C., Trusca, R. (2011). Preparation and characterization of PVA composites with cellulose nano-fibers obtained by ultrasonication. BioResources, 6(1), 487-512.
  • [40] Sundari, M.T., Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth-Eichhornia crassipes. Carbohydrate Polymers, 87, 1701-1705.
  • [41] Liu, C.F., Sun, R.C. (2010). Cellulose. In: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels (edited by R.C. Sun). Amsterdam, the Netherland: Elsevier, 131–167p.
  • [42] Cherian, B.M., Leao, A.L., de Souza, S.F., Thomas, S., Pothan, L.A., Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81, 720–725.
  • [43] Habibi, Y., Lucia, L.A., Rojas, O.J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110, 3479-3500.
  • [44] Dungani, R., Karina, M., Subyakto, A., Hermawan, D., Haydiyana, A. (2016). Agricultural waste fibers towards sustainability and advanced utilization: a review. Asian Journal of Plant Sciences, 15(1-2), 42-55.
  • [45] Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K. (2014). Sugarcane bagasse: characterization of cellulose nanocrystals produced by acidhydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1- 8. [46] Lu, P., Hsieh, Y. (2012). Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87, 564–573.
  • [47] Magalhaes, W.L.E., Cao, X., Lucia, L.A. (2009). Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. Langmuir, 25(22), 13250–13257.
  • [48] Peresin, M.S., Habibi, Y., Zoppe, J.O., Pawlak, J.J., Rojas, O.J. (2010). Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: Manufacture and characterization. Biomacromolecules, 11(3), 674–681.
  • [49] Zoppe, J.O., Peresin, M.S., Habibi, Y., Venditti, R.A., Rojas, O.J. (2009). Reinforcing poly(epsiloncaprolactone) nanofibers with cellulose nanocrystals. ACS Applied Materials & Interfaces, 1(9), 1996–2004.
  • [50] Xu, K., Liu, C., Kang, K., Zheng, Z., Wang, S., Tang, Z., Yang, W. (2018). Isolation of nanocrystalline cellulose from rice straw and preparation of its biocomposites with chitosan: Physicochemical characterization and evaluation of interfacial compatibility. Composite Science and Technology, 154, 8-17.
  • [51] Agustin, M.B, Ahmmad, B., De Leon, E.R., Buenaobra, J.L., Salazar, J.R., Hiriso, F. (2013). Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325-1332.
  • [52] Reddy, J.P., Rhim, J.W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
  • [53] Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54, 166–173.
  • [54] Khan, A., Khan, R.A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R., Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90, 1601–1608.
  • [55] Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P. (2009). Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76, 607–615.
  • [56] Cho, M.J., Park, B.D. (2011). Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industria and Engineering Chemistry, 17, 36–40.
  • [57] Silverio, H.A., Neto, W.P.F., Pasquini, D. (2013). Effect of ıncorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. Journal of Nanomaterials,1-9.
  • [58] Azeredo, H.M.C., Miranda, K.W.E., Ribeiro, H., Rosa, M.F., Nascimento, D.M. (2012). Nanoreinforced alginate–acerola puree coatings on acerola fruits. Journal of Food Engineering, 113, 505–510.
  • [59] Dong, F., Li, S., Liu, Z., Zhu, K., Wang, X., Jin, C. (2015). Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh Journal of Botany, 44(5), 709- 717.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi