Geleceğin Olası Protein Kaynakları

Dünya nüfus artışına paralel olarak, küresel iklim değişikliği, plansız kentleşme ve sanayileşme, tarımsal arazilerinin azalması gibi nedenlerle gıda kaynaklarındaki azalma yakın gelecekte yetersiz beslenme ve açlıkla ilgili yüksek potansiyel risk oluşturmaktadır. Bu durum, son zamanlarda bilim insanlarının yeni besin kaynakları ve alternatif besin maddeleri konusunda araştırmalar yapmasına neden olmuştur. Algler, yenilebilir insektler, mikrobiyal proteinler, mikrobik yağlar, in vitro et, süt ürünü olmayan vegan peynir ve biyo-fermantasyon teknolojisi gibi birçok proses ve materyal alternatif olarak önerilmiştir. Yenilikçi gıdaların sağlıklı olmasının yanı sıra, fiyat, lezzet ve raf ömrü gibi özellikleri tüketicilerin kabulünde belirleyici olacaktır. Bununla birlikte, kültürel, dini ve sosyal faktörler de alternatif gıdaları sınırlayıcı olabilir. Tüm bunlara rağmen, muhtemelen gelecek kuşaklar bugün tükettiğimiz besinlerden çok farklı yiyecekler yiyor olacaklardır. Bu makalede, ağırlıklı olarak protein kaynakları olmak üzere, geleceğin olası alternatif gıda kaynakları ve teknolojileri hakkında bilgi verilmesi amaçlanmıştır.

Possible Protein Sources for the Future

In parallel with the world population growth, the decrease in food sources, caused by global climate change,unplanned urbanization, unplanned industrialization and reduction of agricultural land etc., creates a high potentiallyrisk about poor nutrition and hunger. This case has caused scientists to make researches about new food sourcesand alternative nutrients. Numerous processes and materials such as algae, edible insects, microbial proteins,microbial oils, in vitro meat, non-dairy and vegan milk and cheese, bio-fermentation technology have been proposedas alternatives by scientists. Besides being healthy of these foods, characteristics such as price, taste, shelf life will bedecisive for their acceptance thereof by consumers. However, cultural, religious and social factors may be limiting onthe alternative foods. Despite all, future generations will probably eat very different foods for nutrition that we consumetoday. In this study, it is aimed to give information about possible future alternative food sources and technologies,mainly on protein sources.

___

  • [1] State of Food Insecurity in the World 2014 (SOFI 2014) Report. (2014). Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i4030e.pdf [Erişim Tarihi: 27 Temmuz 2017].
  • [2] UNFAO. (2017). How to Feed The World in 2050? http://www.fao.org/fileadmin/templates/wsfs/docs/e xpert_paper/How_to_Feed_the_World_in_2050.pdf .[Erişim Tarihi: 27 Temmuz 2017].
  • [3] Laane, C., Willis, B.J. (1993). Biotechnology in Food Production. In: Encyclopedia of Food Sciences: Food Technology and Nutrition, edited by R. Macrae and R.K. Robinson, Academic Press, New York, 392–395p.
  • [4] FAO. (2003-2004). Health and Environmental Impacts of Transgenic Crops. http://www.fao.org/docrep/006/Y5160E/y5160e10.h tm. [Erişim Tarihi: 27 Temmuz 2017].
  • [5] Kunkel, M.E., Barbara H.D.L. (2004). Genetically Modified Foods. In Nutrition and Well-Being A to Z. Edited by Delores C.S.J. Vol. 1. New York: Macmillan Reference, USA, 66-68p,245p.
  • [6] Bakshi, A. (2003). Potential adverse health effects of genetically modified crops. Journal of Toxicology and Environmental Health, 6(3), 211-25.
  • [7] Bettelheim, A. (1999). Drug resistant bacteria: Can scientists find a way to control ‘superbugs’? Congressional Quarterly Researcher, 9(21), 473- 496.
  • [8] Anupama Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18(6), 459-479.
  • [9] Benjaminson, M.A., Gilchriest, J.A., Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): stage 1, fish. Acta Astronautica, 51, 879-89.
  • [10] Anonymous. (2017). What’s vegan cheese? https://realvegancheese.org/. [Erişim Tarihi: 27 Temmuz 2017].
  • [11] Animal-Free Milk. (2017). http://www.muufri.com/. [Erişim Tarihi: 27 Temmuz 2017].
  • [12] Van Huis, A.J., Van Itterbeeck, H., Klunder, E., Mertens, A., Halloran, G., Muir Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. FAO Forestry Paper, UNFAO, Rome. http://www.fao.org/docrep/018/i3253e/i3253e.pdf. [Erişim Tarihi: 27 Temmuz 2017].
  • [13] Darcy-Vrillon, B. (1993). Nutritional aspects of the developing use of marine macroalgae for the human food industry. International Journal of Food Sciences and Nutrition, 44, 23-35.
  • [14] Klok, A.J., Lamers, P.P., Martens, D.E., Draaisma, R.B., Wijffels, R.H. (2014). Edible oils from microalgae: insights in TAG accumulation. Trends in Biotechnology, 32(10), 521-528.
  • [15] MacArtain, P., Gill, C.I.R., Mariel Brooks, M., Campbell, R., Rowland, I.R. (2007). Nutritional value of edible seaweeds. Nutrition Reviews, 65(12), 535–543.
  • [16] Arras, P.H. (2017). Zellulose–das neue „Brot für die Welt“ oder die mitweltethisch korrekte Ernährung der Weltbevölkerung durch kerung durch Biofermentertechnologie. German http://www.aktmitweltethik.de/images/aktuelles/2014/cpf_veggieworld.pdf. [Erişim Tarihi: 27 Temmuz 2017].
  • [17] Miller, B.M., W. Litsky, W. (1976). Single Cell Protein in Industrial Microbiology. McGraw-Hill Book Co., New York.
  • [18] Kharatyan S.G. (1978). Microbes as food for humans. Annual Reviews in Microbiology, 32(1), 301-327.
  • [19] Nasseri, A.T., Rasoul-Amini, S., Morowvat, M.H., Ghasemi, Y. (2011). Single Cell Protein: Production and process. American Journal of Food Technology, 6, 103-116.
  • [20] Ravindra, P. (2000). Value-added food: Single cell protein. Biotechnology Advances, 18(6), 459-479.
  • [21] Fakas, S., Papanikolaou, S., Batsos, A., Panayotoua, M.G., Mallouchos, A., Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 33(4), 573-580.
  • [22] Ratledge, C. (2002). Regulation of lipid accumulation in oleaginous micro-organisms. Biochemical Society Transactions, 30(6), 1047- 1049.
  • [23] Thevenieau, F., Nicaud, J.M. (2013). Microorganisms as sources of oils. Oilseeds and Fats, Crops and Lipids, 20(6), D603.
  • [24] Ratledge, C. (2013). Microbial oils: an introductory overview of current status and future prospects. OCL, 20(6), D602.
  • [25] Paliyath, G., Pometto, A., Levin, R.E. (2006). Food Biotechnology. CRC Press, Taylor & Francis Group, USA.
  • [26] Bellinger, E.G., Sigee, D.C. (2015). Freshwater Algae: Freshwater Algae: Identification and Use as Bioindicators, Wiley Blackwell Publication, UK.
  • [27] Ibers, J.M.M.A. (2017). An overview on seaweed uses in the UK: Past, present and future. http://www.nrnlcee.ac.uk/documents/Adams2016seaweedresourc es_P16-P21only.pdf (Erişim Tarihi: Haziran 2017).
  • [28] Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Science Technology, 10, 25-38.
  • [29] Marsham, S., Scott, G.W., Tobin, M.L. (2007). Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chemistry, 100, 1331- 1336.
  • [30] Sanchez-Machado, D.I., Lopez-Hernandez, J., Paseiro-Losada, P., Lopez-Cervantes, J. (2004). Fatty acids,total lipid, protein and ash contents of processed edible seaweeds. Food Chemistry, 85, 439-444.
  • [31] Norziah, M.H., Ching, C.Y. (2000). Nutritional composition of edible seaweed Gracilaria changgi. Food Chemistry, 68, 69-76.
  • [32] Brownlee, I.A., Allen, A., Pearson, J.P., Dettmar, P.W., Havler, M.E., Atherton, M.R., Onsoyen, E. (2005). Alginate as a source of dietary fiber. Critical Reviews in Food Science and Nutrition, 45(6), 497- 510.
  • [33] Goni, I., Gudiel-Urbano, M., Bravo, L., SauraCalixto, F. (2001). Dietary modulation of bacterial fermentative capacityby edible seaweeds in rats. Journal of Agricultural and Food Chemistry, 49, 2663-2668.
  • [34] Sandberg, A., Andersson, H., Boscoeus, I., Carlsson, N.G., Hasselbad, K., Harrod, M. (1994). Alginate, small bowel sterol excretion and absorption of nutrients in ileostomy subjects. The American Journal of Clinical Nutrition, 60, 751-756.
  • [35] Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.
  • [36] Waugh, R. (2012). EU to spend 3 million Euros to promote eating insects 'as alternative source of protein. http://www.dailymail.co.uk/sciencetech/article2093813/Four-legs-good-legs-better-EU-offers-3- million-Euros-research-using-insects-foodsburgers.html. [Erişim Tarihi: 27 Temmuz 2017].
  • [37] Rumpold, B.A., Schlüter, O.K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1-11.
  • [38] Yen, A.L. (2010). Edible insects and other invertebrates in Australia: Future prospects. In Forest insects as food: Humans bite back. Proceedings of a workshop on Asia- Pacific resources and their potential for development, Edited by P. B. Durst, D. V. Johnson, R.N. Leslie, and K. Shono. Bangkok, Thailand, FAO Regional Office for Asia and the Pacific, 65–84p.
  • [39] Gahukar, R.T. (2011). Entomophagy and human food security. International Journal of Tropical Insect Science, 31(3), 129-144.
  • [40] Siegrist, M. (2007). Consumer Attitudes to Food Innovation and Technology. In: Understanding Consumers of Food Products, Edited by L. Frewer and H. van Trijp, Cambridge: Woodhead Publishing Limited and CRC Press, 236–253p.
  • [41] Lensvelt, E.J., Steenbekkers, L.P.A. (2014). Exploring consumer acceptance of entomophagy: A survey and experiment in Australia and the Netherlands. Ecology of Food and Nutrition, 53(5), 543-561.
  • [42] Yen, A.L. (2009). Edible insects: Traditional knowledge or Western phobia? Entomological Research, 39, 289-298.
  • [43] Looy, H., Wood, J.R. (2010). Attitudes toward invertebrates: Are education “bugbanquets” effective? The Journal of Environmental Education, 37(2), 37-48.
  • [44] Looy, H., Dunkel, F.V., Wood, R.W. (2013). How then shall we eat? Insect eating attitudes and sustainable foodways. Agriculture and Human Values, DOI:10.1007/s10460-013-9450-x.
  • [45] Haagsman, H.P., Hellingwerf, K.J., Roelen, B.A.J. (2009). Production of animal proteins by cell systems. Desk study on cultured meat. Faculty of Veterinary Medicine, Utrecht.
  • [46] Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. (2006). Livestock's Long Shadow: Environmental Issues and Options, Food and Agriculture Organization.
  • [47] Tuomisto, H.L., Teixeira De Mattos, M.J. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14), 6117-6123.
  • [48] Bhat, Z.F., Bhat, H. (2011). Animal-free meat biofabrication. American Journal of Food Technology, 6, 441-459.
  • [49] Datar, I., Betti, M. (2010). Possibilities for an in vitro meat production system. Innovative Food Science and Emerging Technologies, 11(1), 13-22.
  • [50] Edelman, P.D., McFarland, D.C., Mironov, V.A., Matheny, J.G. (2005). In vitro-cultured meat production. Tissue Engineering, 11(5–6), 659-662.
  • [51] Langelaan, M.L., Boonen, K.J., Polak, R.B., Baaijens, F.P., Post, M.J., van der Schaft, D.W. (2010). Meet the new meat: tissue engineered skeletal muscle. Trends in Food Science and Technology, 21(2), 59-66.
  • [52] Bhat ZF, Bhat H. (2011).Tissue engineered meatfuture meat. Journal of Stored Products and Postharvest Research, 2(1), 1-10.
  • [53] Bhat Z.F., Kumar, S., Fayaz, H. (2015). In vitro meat production: Challenges and benefits over conventional meat production. Journal of Integrative Agriculture, 14(2), 241-248.
  • [54] Chiles, R.M. (2013). Intertwined ambiguities: Meat, in vitro meat, and the ideological construction of the marketplace. Journal of Consumer Behaviour, 12(6), 472-482.
  • [55] Holmes, P.D., Dacey A. (2008). Vegetarian meat: could technology save animals and satisfy meat eaters? Journal of Agricultural and Environmental Ethics, 21, 579-596.
  • [56] Süfer, Ö., Karakaya, S. (2011). Gıda endüstrisi ve nanoteknoloji: durum tespiti ve gelecek. Akademik Gıda, 9(6), 81-88.
  • [57] Chen, H., Weiss, J., Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology, 60(3), 30-32.
  • [58] Baeumner, A. (2004). Nanosensors identify pathogens in food. Food Technology, 58(8), 51-56.
  • [59] Giles, E.L., Kuznesof, S., Clark, B., Hubbard, C., Frewer, L.J. (2015). Consumer acceptance of and willingness to pay for food nanotechnology: a systematic review. Journal of Nanoparticle Research, 17(12), 1-26.
  • [60] https://realvegancheese.org/. [Erişim Tarihi: 17 Temmuz 2017].
  • [61] https://wiki.realvegancheese.org/index.php/Introduc tory_textbook. [Erişim Tarihi: 27 Temmuz 2017].
  • [62] http://www.futurefood.org/soymilk/index_en.php. [Erişim Tarihi: 27 Temmuz 2017].
  • [63] http://www.muufri.com/. [Erişim Tarihi: 27 Temmuz 2017].
  • [64] Peter, A. Cellulose - the new bread for the world". vailable: http://www.aktmitweltethik.de/images/welternahrung/ZelluloseBiof ermenterEnglishDinA4.pdf. [Erişim Tarihi: 27 Temmuz 2017].
  • [65] Bhattacharjee, J.K. (1970). Microorganisms as potential sources of food. Advances in Applied Microbiology Journal, 13, 139-159.
  • [66] Glew, R.S., Vanderjagt, D.J., Chuang, L.T., Huang, Y.S., Millson, M., Glew, R.H. (2005). Nutrient content of four edible wild plants from West Africa. Plant Foods for Human Nutrition, 60(4), 187-193.
  • [67] Redzic, S., Barudanovic, S., Pilipovic, S. (2010). Wild mushrooms and lichens used as human food for survival in war conditions: Podrinje-Zepa region (Bosnia and Herzegovina, W. Balkan). Human Ecology Review, 17(2), 175.