Tarımsal-Endüstriyel Atıklardan Katma Değeri Yüksek Pigmentlerin Biyoüretimi

Tahıl-baklagil ile meyve-sebze atıkları, tarımsal uygulamalar ve endüstriyel işlemler sonucu ortaya çıkmaktadır. Dünyaçapında biyokitlesi en çok olan atıklar sınıfında yer almakta ve zengin besinsel öğeler içermektedirler. Bu açıdan, sözkonusu atıkların gıda maddeleri üretiminde doğal bir hammadde kaynağı olarak kullanımı önem taşımaktadır.Biyoteknolojik yöntemler (derin ve yüzey kültür fermantasyonları) ile atıkların doğal içeriği değişmeden yeni, ucuz,katma değeri yüksek ve doğal nitelikli ürünlere dönüşümü sağlanabilmekte ve bu ürünler gıda katkı maddesi olarakkullanılabilmektedir. Pigmentler (gıda boyar maddeleri), gıda ürünlerinde en çok kullanılan gıda katkı maddelerindenbiri konumundadır. Son yıllarda artan gıda tüketim bilinci ile oluşan doğal ve sağlıklı gıda tüketme alışkanlığı,pigmentlerin doğal nitelik kazanmasının önemini vurgulamaktadır. Ayrıca, ekonomik, çevreci ve verimli üretimteknolojilerinin, yağlı tohumlar, buğday kepeği, melas, peynir altı suyu, narenciye kabukları gibi tarımsal ve endüstriyelatıklardan karotenler, antosiyaninler, melanin, karamel gibi pigmentlerin üretim çalışmalarında kullanılması ilegelişmeye açık bir bilimsel alan oluşmaktadır. Pigmentler eczacılık, kozmetik, hayvan yemi, fırıncılık, meyve suları, sütürünleri gibi gıda ürünleri olmak üzere boyar madde veya destek materyali olarak birçok sektörde kullanım alanıbulmaktadır. Bu çalışmada, tahıl ve baklagil ile meyve ve sebze atıklarından biyoteknolojik yöntemler ile üretilenpigmentler ve önemi sunulmaktadır.

Bioproduction of High Value-Added Pigments from Agro-Industrial Wastes

Cereal-legume and fruit and vegetable wastes come out by agricultural applications and industrial processes. Their use is important for producing food products, as they have a major class and rich nutritional compounds among the world’s wastes. These wastes could be transformed into new, cheap, high value-added and natural products which may be used as food additives by biotechnological methods such as submerged and solid state fermentations without any changing of raw material composition. Pigments (food coloring agents) are one of the most used categories of food additives among products. In recent years, the habit of natural and healthy food consumption formed by raising awareness of food consumption emphasizes the importance of the natural qualification of pigments. However economic, eco-friendly and productive technologies elicit a scientific area for the production of pigments such as carotenes, anthocyanins, melanin, and caramel from agri-industrial wastes such as oil seeds, wheat bran, molasses, whey, and citrus peels. Pigments are used in many sectors as pharmaceuticals, cosmetics, animal feed, bakery, food products such as fruit juices, dairy products, as stain or supplement material. In this study, biotechnological methods of producing pigments and their importance from cereals and legumes and fruit and vegetable wastes are presented.

___

  • [1] Nigam, P.S., Pandey, A. (2009). Biotechnology for Agro-Industrial Residues Utilization. Springer Science+Business Media B.V. ISBN 978-1-4020- 9941-0.
  • [2] Tavman, Ş., Kumcuoğlu, S., Akkaya, Z. (2009). Bitkisel ürünlerin atıklarından antioksidan maddelerin ultrason destekli ekstraksiyonu. Gıda, 34(3), 175-182.
  • [3] Lόpez, S., Davies, D.R., Giráldez, F.J., Dhanoa, M.S., Dijkstra, J., France, J. (2005). Assessment of nutritive value of cereal and legume straws based on chemical composition and in vitro digestibility. Journal of the Science of Food and Agriculture, 85, 1550-1557.
  • [4] Wang, M., Hettiarachchy, N.S., Qi, M., Burks, W., Siebenmorgen, T. (1999). Preparation and functional properties of rice bran protein isolate. Journal of Agriculture Food Chemistry, 47, 411- 416.
  • [5] Wang, J., Suna, B., Caoa, Y., Wang, C. (2010). In vitro fermentation of xylooligosaccharides from wheat bran insoluble dietary fiber by Bifidobacteria. Carbohydrate Polymers, 82, 419-423.
  • [6] Zárate, I.O., Ezcurra, A., Lacauxb, J.P., Dinhb, P.V., Argandoña, J.D. (2005). Pollution by cereal waste burning in Spain. Atmospheric Research, 73, 161-170. [7] Meyve ve Sebze Sanayi. (2012).
  • http://eng.ege.edu.tr/~otles/foodwastefruit.tripod.com/id7.html. Erişim Tarihi: 15.02.2012.
  • [8] Laufenberg, G., Kunz, B., Nystroem, M. (2003). Tansformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, 167-198.
  • [9] Joshi, V.K., Attri, D., Bala, A., Bhushan, S. (2003). Microbial pigments. Indian Journal of Biotechnology, 2, 362-369.
  • [10] Dufossé, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C., Ravishankar, G.A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16, 389-406.
  • [11] Gupta, C., Garg, A.P., Prakash, D., Goyal, S., Gupta, S. (2011). Microbes as potential source of biocolours. Pharmacology, 2, 1309-1318.
  • [12] Karaali, A., Özçelik, B. (1993). Gıda katkısı olarak doğal ve sentetik boyalar. Gıda, 18(6), 389-396.
  • [13] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [14] Dufossé, L. (2006). Microbial production of food grade pigments. Food Technology and Biotechnology, 44(3), 313-321.
  • [15] Uyar, F., Baysal, Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochemistry, 39, 1893-1898.
  • [16] Sanromán, M.A., Couto, S.R. (2006). Application of solid state fermentation to food industry-A review. Journal of Food Engineering, 76, 291-302.
  • [17] Bailey, R., Madden, K.T., Trueheart, J. (2010). Production of carotenoids in oleaginous yeast and fungi. US Patent No. US 7,851,199 B2.
  • Washington, DC: U.S. Patent and Trademark Office.
  • [18] Yang, S.T. (2007). Bioprocessing for Value-added Products from Renewable Resources: New Technologies and Applications. Elsevier B.V. ISBN: 9780444521149.
  • [19] Joshi, V.K., Attri, D. (2006). Solid state fermentation of apple pomace for the production of value added products. Natural Product Radiance, 5(4), 289-296.
  • [20] Babitha, S., Soccol, C.R., Pandey, A. (2007). Solidstate fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology,98, 1554-1560.
  • [21] Kahyaoğlu, M., Kıvanç, M. (2007). Endüstriyel atık maddelerden mikrobiyal yolla beta karoten üretimi. Tarım Bilimleri Dergisi, 17(2), 61-66.
  • [22] White, W.S., Tayie, F.A.K., Young, M.F., Rocheford, T., Li, S. (2007). Retention of provitamin a carotenoids in high β-carotene maize (zea mays) during traditional African household processing. Journal of Agriculture Food Chemistry, 55, 10744-10750.
  • [23] Valduga, E., Valério, A., Treichel, H., Furigo Júnior, A., Luccio, M. (2009). Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media. Applied Biochemistry and Biotechnology, 157, 61-69.
  • [24] Kaur, H., Chakraborty, D., Kaur, B. (2008). Production and evaluation of physicochemical properties of red pigment from Monascus purpureus MTCC 410. The Internet Journal Microbiology, 7(1), 1-6
  • [25] Brandelli, A., Daroit, D.J., Silveira, S.T. (2008). Pigment production by Monascus purpureus in grape waste using factorial design. LWT- Food Science and Technology, 41, 170-174.
  • [26] Taskin, M., Erdal, S. (2011). Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. Journal of the Science of Food and Agriculture, 91, 1440-1445.
  • [27] Dursun, D., Dalgıç, A.C. (2016). Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatalysis and Agricultural Biotechnology, 7, 1-6.
  • [28] Eryılmaz, E.B., Dursun, D., Dalgıç, A.C. (2016). Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatalysis and Agricultural Biotechnology, 7, 224- 227.