Patateslerde Yumuşak Çürüklüğün Gülyağıyla Azaltılması

Erwinia carotovora ekonomik açıdan önemli pek çok bitkide yumuşak çürüklük hastalığına neden olan bir fitopatojendir. E. carotovora’nın konak dokulara zarar vermesini sağlayan ve hastalığa neden olan bir dizi ekzoenzim ürettiği bilinmektedir. E. carotovora’da ekzoenzim (selülaz, pektinaz ve proteaz) ve karbapenem üretimi, küçük sinyal moleküllerinin aracı olduğu çevreyi algılama sistemi adı verilen hücreler arası iletişim mekanizması tarafından düzenlenir. Bu nedenle E. carotovora enfeksiyonlarının önlenmesi için, bu iletişim yolunun manipülasyonunu sağlayacak yeni stratejilerin araştırılması değerlidir. Bu çalışmada, gül, portakal, lavanta, karanfil, tarçın, karabiber ve kimyon yağlarının E. carotovora’da, ekzoenzim (selülaz, pektinaz ve proteaz) ve karbapenem üretimine inhibitör etkileri araştırılmıştır. Ayrıca patateste yumuşak çürüklük miktarı, yağların varlığında test edilmiştir. Gül ve lavanta uçucu yağları, bakteriyel hücre büyümesini etkilemeksizin, E. carotovora’da pektinaz üretimini sırasıyla %38.7 ve 9.7, selülaz üretimini %36.6 ve 31.7 ve proteaz üretimini %29 ve 16.1, karbapenem üretimini %61.9 ve 54 ve patates yumuşak çürüklüğünü %61.4 ve 30.7 oranlarında önemli ölçüde inhibe etmiştir. Gül ve lavanta uçucu yağlarının antibakteriyel etkileri çeşitli çalışmalarla rapor edilmiş olsa da, virülensi engelleyici potansiyelini açıklayan herhangi bir çalışma bulunmamaktadır. Bildiğimiz kadarıyla bu çalışma, gül ve lavanta uçucu yağlarının bileşenlerinin, E. carotovora’nın neden olduğu yumuşak çürüklük hastalığına karşı potansiyeli hakkındaki ilk raporudur.

Reduction of Tissue Maceration in Potatoes by Rose Essential Oil

Erwinia carotovora is a phytopathogen which causes soft-rot disease in a wide variety of economically importantplants. E. carotovora is known to produce a range of exoenzymes that enhance its ability to damage the host tissueand cause disease. A cell to cell communication mechanism called quorum sensing which is mediated by smallsignalling molecules regulates exoenzymes (cellulase, pectinase and protease) and carbapenem production in E.carotovora. Thus the exploration of new strategies to manipulate this communication pathway for the prevention of E.carotovora infections is valuable. In this study, the inhibitory effects of the rose, orange, lavender, clove, cinnamon,black pepper and cumin oils on the production of the exoenzymes (cellulase, pectinase and protease) andcarbapenem in the Erwinia carotovora subsp. carotovora ATCC 39048 were investigated. And potato tissuemaceration was also tested in the presence of oils. Rose and lavender essential oils markedly inhibited the productionof pectinases by 38.7 and 9.7%, cellulases by 36.6 and 31.7% and proteases by 29 and 16.1%, carbapenem by 61.9and 54%, and maceration of potatoes by 61.4 and 30.7% in the E. carotovora respectively without affecting the growthof cells. Although several studies have reported antibacterial effects of rose and lavender essential oils, there is noreport describing their antivirulence potential. To the best of our knowledge, this is the first report on the rose andlavender essential oils with potential antivirulence components against soft rot caused by E. carotovora.

___

  • [1] Perombelon, M.C., Kelman, A. (1980). Ecology of the soft rot erwinias. Annual Review of Phytopathology, 18(1), 361-387.
  • [2] Kotoujansky, A. (1987). Molecular genetics of pathogenesis by soft-rot Erwinias. Annual Review of Phytopathology, 25(1), 405-430.
  • [3] Park, Y., Jeon, M.H., Lee, S., Moon, J.S., Cha, J., Kim, H.Y., Cho, T. (2005). Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato. Journal of Biochemistry and Molecular Biology, 38(6), 748-754.
  • [4] Li, Q.Q., Meng, S., Yu, Z.N. (2011). Suppressing Erwinia carotovora pathogenicity by projecting Nacyl homoserine lactonase onto the surface of Pseudomonas putida cells. Journal of Microbiology and Biotechnology, 21(12), 1330-1335.
  • [5] Collmer, A., Keen, N.T. (1986). The role of pectic enzymes in plant pathogenesis. Annual Review of Phytopathology, 24(1), 383-409.
  • [6] McGowan, S.J., Barnard, A.M., Bosgelmez, G., Sebaihia, M., Simpson, N.J., Thomson, N.R., Todd, D.E., Welch, M., Whitehead, N.A., Salmond, G.P., 2005. Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing‐dependent control pathway. Molecular Microbiology, 55(2), 526-545.
  • [7] Parker, W.L., Rathnum, M.L., Wells, J.J.S., Trejo, W.H., Principe, P.A., Sykes, R.B. (1982). SQ 27,860, A simple carbapenem produced by species of Serratia and Erwinia. The Journal of Antibiotics, 35(6), 653-660.
  • [8] Smith-Palmer, A., Stewart, J., Fyfe, L. (1998). Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology, 26(2), 118-122.
  • [9] Hammer, K.A., Carson, C., Riley, T. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990.
  • [10] Elgayyar, M., Draughon, F., Golden, D., Mount, J. (2001). Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection, 64(7), 1019-1024.
  • [11] Andro, T., Chambost, J.P., Kotoujansky, A., Cattaneo, J., Bertheau, Y., Barras, F., Van Gijsegem, F., Coleno, A. (1984). Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. Journal of Bacteriology 160(3), 1199-1203.
  • [12] Hankin, L., Anagnostakis, S. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597-607.
  • [13] McGowan, S., Sebaihia, M., Porter, L., Stewart, G., Williams, P., Bycroft, B., Salmond, G. (1996). Analysis of bacterial carbapenem antibiotic production genes reveals a novel β‐lactam biosynthesis pathway. Molecular Microbiology, 22(3), 415-426.
  • [14] Walker, D.S., Reeves, P.J., Salmond, G. (1994). The major secreted cellulase, CelV, of Erwinia carotovora subsp. carotovora is an important soft rot virulence factor. Molecular Plant Microbe Interactions, 7(3), 425-431.
  • [15] Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  • [16] Khan, M.S.A., Zahin, M., Hasan, S., Husain, F.M., Ahmad, I. (2009). Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil. Letters in Applied Microbiology, 49(3), 354-360.
  • [17] Szabó, M.Á., Varga, G.Z., Hohmann, J., Schelz, Z., Szegedi, E., Amaral, L., Molnár, J. (2010). Inhibition of quorum‐sensing signals by essential oils. Phytotherapy Research, 24(5), 782-786.
  • [18] Hyldgaard, M., Mygind, T., Meyer, R.L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology, 3(12), 1-24.
  • [19] Kalia, V.C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224- 245.
  • [20] Truchado, P., Larrosa, Castro-Ibáñez, M.I., Allende, A. (2015). Plant food extracts and phytochemicals: Their role as quorum sensing inhibitors. Trends in Food Science & Technology, 43(2), 189-204.
  • [21] Singh, B.N., Pandey, G., Jadaun, V., Singh, S., Bajpai, R., Nayaka, S., Naqvi, A.H., Rawat, A.K.S., Upreti, D.K., Singh, B.R. (2015). Development and characterization of a novel Swarna-based herbometallic colloidal nano-formulation - inhibitor of Streptococcus mutans quorum sensing. RSC Advances, 5(8), 5809-5822.
  • [22] Eris, R., Ulusoy, S. (2013). Rose, clove, chamomile essential oils and pine turpentine inhibit quorum sensing in Chromobacterium violaceum and Pseudomonas aeruginosa. Journal of Essential Oil Bearing Plants, 16(2), 126-135.
  • [23] Kerekes, E.B., Deák, É. Takó, M., Tserennadmid, R., Petkovits, T., Vágvölgyi, C., Krisch, J. (2013). Anti‐biofilm forming and anti‐quorum sensing activity of selected essential oils and their main components on food‐related microrganisms. Journal of Applied Microbiology, 115(4), 933-942.
  • [24] Cuong, H.N., Tung, H.T., Minh, N.C., Van Hoa, N., Phuong, P.T.D., Trung, T.S. (2017). Antibacterial activity of chitosan from squid pens (Loligo chenisis) against Erwinia carotovora from soft rot postharvest tomato fruit. Journal of Polymer Materials, 34(1), 319-330.
  • [25] Rahman, M.M., Khan, A.A., Mian, I.H., Akanda, A.M., Alam, M.Z. (2017). Effect of some chemicals on incidence of potato soft rot disease in Bangladesh. Bangladesh Journal of Scientific and Industrial Research, 52(2), 135-140.
  • [26] Ahmed, F.A., Arif, M., Alvarez, A.M. (2017). Antibacterial effect of potassium tetraborate tetrahydrate against soft rot disease agent Pectobacterium carotovorum in tomato. Frontiers in Microbiology, 8, 1728.
  • [27] U.F.a.D.A. FDA, FDA. (2014).
  • [28] Oliveira, D.R., Leitao, G.G., Santos, S.S., Bizzo, H.R., Lopes, D., Alviano, C.S., Alviano, D.S., Leitao, S.G. (2006). Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. Journal of Ethnopharmacology, 108(1), 103-108.
  • [29] Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Cámara, M., Williams, P. Quax, W.J. (2006). Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infection and Immunity, 74(3), 1673-1682.
  • [30] Taganna, J.C., Quanico, J.P., Perono, R.M.G., Amor, E.C., Rivera, W.L. (2011). Tannin-rich fraction from Terminalia catappa inhibits quorum sensing (QS) in Chromobacterium violaceum and the QS-controlled biofilm maturation and LasA staphylolytic activity in Pseudomonas aeruginosa. Journal of Ethnopharmacology, 134(3), 865-871.