Dut Sirkesinin Mikrobiyolojik, Fiziksel, Kimyasal, Antiradikal ve Antimikrobiyal Özellikleri

Bu çalışmada farklı yöntemlerle üretilen dut sirkelerinin (ev yapımı ve ticari) mikrobiyolojik, fiziksel, kimyasal,antiradikal ve antimikrobiyal özellikleri incelenmiştir. Bu amaçla örneklerde asetik asit bakterisi, laktik asit bakterisi,küf-maya, pH, toplam asitlik, briks, renk, toplam fenolik madde ve antiradikal aktivite analizleri yapılmıştır. Gelenekselyöntemlerle ev koşullarında üretilen sirkenin asetik asit ve laktik asit bakterisi sayıları, ticari sirkeye kıyasla dahayüksek, küf-maya sayıları ise daha düşük bulunmuştur. Ev yapımı dut sirkesinde pH, toplam asitlik ve briks değerlerisırasıyla 2.87, %4.07 ve 5.60 iken ticari sirkede bu değerler sırasıyla 3.30, %4.64 ve 3.50 olarak tespit edilmiştir. Sirkeörnekleri renk özellikleri (CIE L*, a*, b*) açısından da değerlendirilmiştir. Toplam fenolik madde miktarı ev yapımısirkede 557.5 mg GAE/L ve ticari sirkede 523 mg GAE/L olarak belirlenmiştir. DPPH serbest radikali gidermeaktivitesi, örneklerin toplam fenolik madde miktarı ile pozitif korelasyon göstermiştir. Geleneksel ev yapımı dutsirkesine karşı en hassas mikroorganizmanın E. faecalis ve E. coli O157:H7 (10.5 mm) olduğu tespit edilmiştir. AyrıcaL. monocytogenes’in (13.5 mm) ticari dut sirkesine karşı en hassas mikroorganizma olduğu, ancak ev yapımı sirkeninbu bakteri üzerine antimikrobiyal etki göstermediği belirlenmiştir. Ticari dut sirkesi tüm test bakterileri üzerineantimikrobiyal aktivite göstermiş, ev yapımı sirke örneği ise incelenen sekiz bakteri kültüründen sadece beşi üzerinde(E. coli O157:H7, S. Typhimurium, B. subtilis, E. faecalis, P. acidilactici) etki gösterebilmiştir.

Microbiological, Physical, Chemical, Antiradical and Antimicrobial Properties of Mulberry Vinegar

In this study, the microbiological, physical, chemical, antiradical and antimicrobial properties of mulberry vinegar produced by different techniques (homemade and commercial) were determined. For this purpose, acetic acid bacteria, lactic acid bacteria, mold-yeast, pH, total acidity, brix, color, total phenolic content and antiradical activity analyses were performed. The numbers of acetic acid and lactic acid bacteria in the traditional homemade vinegar were found higher than commercial vinegar, while the counts of yeast-mount were lower in homemade vinegar. pH, total acidity and brix values in homemade mulberry vinegar were 2.87, %4.07 and 5.60, respectively, while these values were 3.30, %4.64 and 3.50 in commercial vinegar. Color properties (L*, a*, b*) of vinegar samples were also investigated. Total phenolic content was 557.5 mg GAE/L in homemade vinegar and 523 mg GAE/L in commercial vinegar. The DPPH free radical scavenging activity had positive correlation with the total phenolic content of samples. The most sensitive bacteria to the traditional homemade mulberry vinegar were determined as E. faecalis and E. coli O157:H7 (10.5 mm). Furthermore, L. monocytogenes (13.5 mm) was the most sensitive microorganism to the commercial mulberry vinegar, but homemade vinegar did not show antimicrobial effect against this bacteria. The commercial vinegar had antimicrobial activity against all test bacteria while homemade vinegar sample was shown to effect only five of the eight bacteria (E. coli O157:H7, S. Typhimurium, B. subtilis, E. faecalis, P. acidilactici).

___

  • [1] Karabiyikli, S., Sengun, I.Y. (2017). Beneficial Effects of Acetic Acid Bacteria and Their Food Products. Chapter 13. In Acetic Acid Bacteria: Fundamentals and Food Applications (Ed. Sengun, I.Y.). CRC Press, Taylor & Francis Group, Boca Raton, 221-242p.
  • [2] Şengün, İ.Y., Kılıç, G. (2016). Geleneksel olarak üretilen incir ve dut sirkelerinin antimikrobiyal etkileri. Türkiye 12. Gıda Kongresi, 05-07 Ekim, 2016, Trakya Üniversitesi, Edirne, Türkiye 81p.
  • [3] Vijayakumar, C., Wolf-Hall, C. (2002). Evaluation of household sanitizers for reducing levels of E. coli on iceberg lettuce. Journal of Food Protection, 65, 1646-1650.
  • [4] Sengun, I.Y., Karapinar, M. (2004). Effectiveness of lemon juice, vinegar and their mixture in elimination of Salmonella Typhimurium on carrots. International Journal of Food Microbiology, 96, 301-305.
  • [5] Sengun, I.Y., Karapinar, M. (2005a). Effectiveness of household natural sanitizers in the elimination of Salmonella Typhimurium on rocket (Eruca sativa Miller) and spring onion (Allium cepa L.). International Journal of Food Microbiology, 98, 319-323.
  • [6] Sengun, I.Y., Karapinar, M. (2005b). Elimination of Yersinia enterocolitica on carrots (Daucus carota L.) by using household sanitisers. Food Control, 16, 845-850.
  • [7] Chang, J.M., Fang, T.J. (2007). Survival of Escherichia coli O157: H7 and Salmonella enterica serovars Typhimurium in iceberg lettuce and the antimicrobial effect of rice vinegar against E. coli O157: H7. Food Microbiology, 24(7), 745-751.
  • [8] Ramos, B., Brandão, T.R.S., Teixeira, P., Silva, C. L. M. (2014). Balsamic vinegar from Modena: An easy and effective approach to reduce Listeria monocytogenes from lettuce. Food Control, 42, 38- 42.
  • [9] Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157: H7. Journal of Food Protection, 61(8), 953-959.
  • [10] Hindi, N.K. (2013). In vitro antibacterial activity of aquatic garlic extract, apple vinegar and apple vinegar-garlic extract combination. American Journal of Phytomedicine and Clinical Therapeutics, 1, 42-51.
  • [11] Chen, H., Chen, T., Giudici, P. Chen, F., (2016). Vinegar functions on health: Constituents, sources, and formation mechanisms. Comprehensive Reviews in Food Science and Food Safety, 15, 1124-1138.
  • [12] Sengun, I.Y. (2015). Acetic Acid Bacteria in Food Fermentations. Chapter 5. In Fermented Foods: Part 1. Biochemistry and Biotechnology (Eds. Montet, D., Ray, R.C.). CRC Press, 91-111p.
  • [13] Çapanoğlu, E., Boyacıoğlu, D. (2009). Meyve ve sebzelerin flavonoid içeriği üzerine işlemenin etkisi. Akademik Gıda, 7(6), 41-46.
  • [14] Karadeniz, T., Şişman, T. (2003). Beyaz ve karadutun meyve özellikleri ve çelikle çoğaltılması. I. Ulusal Kivi ve Üzümsü Meyveler Sempozyumu, 23-25 Ekim, 2003, Ordu, Türkiye, 428-432p.
  • [15] Erdoğan Ü., Pırlak L., (2005). Ülkemizde dut (Morus spp.) üretimi ve değerlendirilmesi. Alatarım, 4(2), 38-43.
  • [16] Budak, N.H., (2015). Dut sirkesi oluşum sürecinde ileri analitik tekniklerle toplam antioksidan aktivitesi ve fenolik bileşenleri. Meyvecilik Araştırma Enstitüsü Müdürlüğü, 2(2), 27-31.
  • [17] Karaagac, R.A., Aydogan, M.N., Koseoglu, M.S. (2016). An investigation on antimicrobial and antioxidant activities of naturally produced mulberry vinegar. Journal of Pharmaceutical Biology, 6, 34- 39.
  • [18] Budak, H.N., Aykin, E., Seydim, A.C., Greene, A.K., Guzel-Seydim, Z.B. (2014). Functional properties of vinegar. Journal of Food Science, 79(5) 757-764.
  • [19] Özturk, I., Calıskan, O., Tornuk, F., Sagdıc, O. (2015). Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional homemade Turkish vinegars. Lebensmittel-Wissenschaft undTechnologie, 63, 144-151.
  • [20] Sengun, I.Y. (2013). Microbiological and chemical properties of fig vinegar produced in Turkey. African Journal of Microbiology Research, 7(20), 2332-2338.
  • [21] De Vero, L., Gala, E., Gullo, M., Solieri, L., Landi, S., Giudici, P. (2006). Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar. Food Microbiology, 23, 809-813.
  • [22] Sharpe, M.E., Fryer, E., Smith, D.G. (1966). Identification of Lactic Acid Bacteria, Identification Method for Microbiologists Part A, (Eds. Gibbs B.M., Skinner F.A.), London: Academic Press. 65- 67p.
  • [23] Kandler, O., Weiss, M. (1986). Regular, Nonsporing Gram - Positive Rods. In Bergey’s Manual of Systematic Bacteriology Vol. 2 (Eds. Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Hold, J.G.). William and Wilkins, Baltimore. 1208-1219p.
  • [24] FDA-BAM (Food and Drug AdministrationBacteriological Analytical Manual). (2001). Yeasts, molds and mycotoxins. Chapter:18, January 2001. http://www.fda.gov/Food/ScienceResearch/Laborat oryMethods/ BacteriologicalAnalyticalManualBAM/UCM064948 (Erişim Tarihi: Mart 2017)
  • [25] AOAC. (1995). Official Methods of Analysis, 16th edition, 930-935p.
  • [26] Cemeroğlu, B. (2013). Gıdalarda Uygulanan Bazı Özel Analiz Yöntemleri. Bölüm 2. Gıda Analizleri (Ed. Cemeroğlu, B.). 3. Baskı, Gıda Teknolojisi Derneği Yayınları, Ankara, 87-157p.
  • [27] Anonymous. (1983). Examination and Analysis of Food Materials. T.R. Ministry of Forest and Village Affairs. General Directorate of Food Affairs. General Public, No: 65, Ankara.
  • [28] Rommel, A., Heatherbell, D.A., Wrolstad, R.E. (1990). “Red raspberry juice and wine: Effect of processing and storage on anthocyanin pigment composition, colour and appearance”. Journal of Food Science, 55, 1011-1017.
  • [29] Singh, R.P., Chidambara Murthy, K.N., Jayaprakasha, G.K. (2002). Studies on antioxidant activity of pomegranate (Punica granatum) peel extract using in vivo models. Journal of Agricultural and Food Chemistry, 50(17), 4791- 4795.
  • [30] Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., Zhong, Y. Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191.
  • [31] SPSS. (2006). Statistical Package, SPSS for Windows, Ver. 15.0, Chicago, SPSS, Inc.
  • [32] Giudici, P., De Vero, L., Gullo, M. (2017). Vinegars. Chapter 10. In Acetic Acid Bacteria: Fundamentals and Food Applications (Ed. Sengun, I.Y.). CRC Press, Taylor & Francis Group, Boca Raton, 261- 287p.
  • [33] Rosma, A., Nadiah, A.H.S., Raj, A., Supwat, T., Sharma, S., Joshi, V.K. (2016). Acetic Acid Fermented Product. In Indigenous fermented Foods of South Asia (V.K. Joshi (Eds.), CRC Press, Taylor & Francis Group, Florida, 598-635p.
  • [34] Akbaş, M., Cabaroğlu, T. (2010). Ülkemizde üretilen bazı üzüm sirkelerinin bileşimleri ve gıda mevzuatına uygunlukları üzerine bir araştırma. Gıda, 35(3), 1-6.
  • [35] Budak, N., Güzel-Seydim, Z.B. (2010). Sirke üretimi ve bazı fonksiyonel özellikleri. Gıda Teknolojisi, 14(11), 85-88.
  • [36] Ubeda, C., Hidalgo, C., Torija, M.J., Mas, A., Troncoso, A.M., Morales, M.L. (2011). Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT-Food Science and Technology, 44, 1591-1596.
  • [37] Jo, Y., Baek, J.Y., Jeong, I.Y., Jeong, Y.J., Yeo, S.H., Noh, B.S., Kwon, J.H. (2015). Physicochemical properties and volatile components of wine vinegars with high acidity based on fermentation stage and initial alcohol concentration. Food Science and Biotechnology, 24(2), 445-452.
  • [38] Chang, R.C., Lee, H.C., Ou, A.S.M. (2005). Investigation of the physicochemical properties of concentrated fruit vinegar. Journal of Food and Drug Analysis, 13(4), 348-356.
  • [39] Alak, G.D. (2015). Bal ve Bal Sirkelerinin Bazı Fiziksel ve Kimyasal Özellikleri, Yüksek Lisans Tezi, Pamukkale Üniversitesi, 113s.
  • [40] Palacios, V., Valcarcel, M., Caro, I., Perez, L. (2002). Chemical and biochemical transformations during the industrial process of sherry vinegar aging. Journal of Agricultural and Food Chemistry, 50(15), 4221-4225.
  • [41] Marangoz, F.İ. (2016). Sirke Üretim Prosesinin Karadut Meyvesinin Biyoaktif Bileşenleri ve Antioksidan Özelliklerine Etkisi. Yüksek Lisans Tezi. Çanakkale Onsekiz Mart Üniversitesi, 61s.
  • [42] Choi, H., Gwak, G., Choi, D., Park, J., Cheong, H. (2015). Antimicrobial efficacy of fermented dark vinegar from unpolished rice. Microbiology and Biotechnology Letters, 43, 97-104.