ISI İNDEKSİ’NE GÖRE ANTALYA İLİ BİYOKLİMATİK KONFOR ÖZELLİKLERİNİN ANALİZİ

İnsanların yaşamlarını sürdürdükleri çevrenin şekillenmesinde atmosferik etmenler büyük öneme sahiptir. Atmosferik etmenler çevreyi şekillendirdiği gibi insanların günlük aktivitelerini gerçekleştirmeleri esnasındaki biyoklimatik konfor durumlarını da etkilemektedir. Atmosferik etmenlerden sıcaklık, bağıl nem, rüzgar ve yağış koşullar insan biyoklimatolojisine de tesir etmektedir. Bu sebeple insanların biyoklimatik konfor algılarının belirlenebilmesi için birçok indeks oluşturulmuştur. Bu indekslerden bazıları sadece atmosferik koşulları ele almaktadır. Son yıllarda ise atmosferik koşullara ek olarak insanların kişisel özellikleri araştırmacılar tarafından indekslere dahil edilmiştir. Bu çalışmada ise sıcaklık ve bağıl nem koşullarından yararlanarak biyoklimatik konfor alanların belirlenmesini sağlayan ısı indeksi (Heat Index) kullanılmıştır. Isı İndeksi analizlerinden elde edilen hissedilen sıcaklık verilerine Fizyolojik Eşdeğer Sıcaklık sınıflaması skalası uygulanarak Antalya ili biyoklimatik konfor alanları belirlenmiştir. Sıcaklık değerleri incelendiğinde yaz mevsiminde Akdeniz kıyısında sıcaklığın 30 °C’ye kadar ulaştığı, kış mevsiminde yüksek kesimlerde ise 0 °C’nin altına düştüğü görülmektedir. Ayrıca kış mevsiminde bağıl nem oranlarının %89’e kadar ulaşmaktadır. Araştırma alanının biyoklimatik konfor algı düzeylerine bakıldığında mayıs, haziran, temmuz, ağustos, eylül ve ekim aylarında “Konforlu” termal algı düzeyi belirlenmiştir. Bunun dışında PET sınıflandırılmasında yer alan “Sıcak” ve “Çok Sıcak” termal algı düzeyi bulunmamaktadır. Ayrıca topoğrafya ve yükselti özelliklerine bağlı olarak biyoklimatik konfor alanlarının dağılışında, farklılıklar meydana geldiği belirlenmiştir.

ANALYSIS OF ANTALYA PROVINCE BIOCLIMATIC COMFORT FEATURES ACCORDING TO HEAT INDEX

Atmospheric factors have a great influence on the shaping of the environment in which people live. Atmospheric factors not only affect the environment, but also affect the bioclimatic comfort conditions of people during their daily activities. Human bioclimatology is affected by atmospheric factors such as temperature, relative humidity, wind and precipitation. For this reason, many indices have been created to determine people's bioclimatic comfort perceptions. Some of these indexes only consider atmospheric conditions. In recent years, in addition to atmospheric conditions, the personal characteristics of people have been included in the indexes by researchers. In this study, the heat index, which enables the determination of bioclimatic comfort areas by taking advantage of temperature and relative humidity conditions, was used. The sensed temperature values obtained were applied to the Physiological Equivalent Temperature classification and the bioclimatic comfort areas of Antalya province were determined.When the temperature values were examined, it was seen that the temperature values on the Mediterranean coast reached up to 30 °C in summer. On the other hand, it drops below 0 °C in the high parts in winter. When the relative humidity values are examined, it has been determined that the relative humidity rates reach up to 89% in the winter season. Considering the bioclimatic comfort perception levels of the research area, the "Comfortable" thermal perception level was determined in May, June, July, August, September and October. Apart from this, there is no”Hot” and "Very Hot" thermal perception level in PET classification. Inaddition, it has been determined that there are differences in the distribution of bioclimatic comfort areas depending on the topography and altitude characteristics.

___

  • Adıgüzel, F. & Doğan, M. (2020). Analysis of Sufficiency and Accessibility of Active Green Areas in Cukurova. Kastamonu University Journal of Engineering and Sciences, 6 (2), 95-106. Retrieved from https://dergipark.org.tr/en/pub/kastamonujes/issue/58573/826508
  • Adıgüzel, F., Bozdoğan Sert, E., Dinç, Y., Çetin, M., Güngör, S., Yuka, P., Sertkaya Doğan, O., Kaya, E., Karakaya, K., & Vural, E. (2021). Determining the relationships between climatic elements and thermal comfort and tourism activities using the tourism climate index for urban planning: a case study of Izmir Province: Tourism climate index for urban planning. Theoretical and Applied Climatology,
  • Akman, Y. (1990). İklim ve Biyoiklim: Biyoiklim Metotları ve Türkiye İklimleri, Palme Yayın Dağıtım, Ankara.
  • Anderson, G. B., Bell, M. L., & Peng, R. D. (2013). Methods to calculate the heat index as an exposure metric in environmental health research. Environmental health perspectives, 121(10), 1111-1119.
  • Arslan, H. (2012). Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management, 113, 57–63.
  • Auliciems, A., & Szokolay, S. V. (2007). Thermal Comfort. DESIGN TOOLS AND TECHNIQUES note 3 Passive and Low Energy Architecture International (PLEA) in association with Department of Architecture. The University of Queensland Brisbane 4072.
  • Bulğan, E., (2014). Erzurum Kentinde Farklı Kent Dokularının Yaz Aylarında Biyoklimatik Konforunun Hesaplanması. Yüksek Lisans Tezi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Ana Bilim Dalı. Erzurum.
  • Cao, W., Hu, J., & Yu, X. (2009, August). A study on temperature interpolation methods based on GIS. In 2009 17th International Conference on Geoinformatics (pp. 1-5). IEEE.
  • Çetin, M., Adigüzel, F., Güngör, S., Kaya, E., & Sancar, M. C. (2019). Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Quality, Atmosphere & Health, 12(9), 1103-1112.
  • Cohen, P., Potchter, O., Matzarakis, A., 2013. Human thermal perception of Coastal Mediterranean outdoor urban environments. Applied Geography, 37,1–10.
  • Çalışkan, O., Türkoğlu, N.(2012). Türkiye’nin Biyoklimatik Koşullarının Analizi. Coğrafi Bilimler Dergisi, 10 (2), 151-164.
  • Çetin, M., Topay, M., Kaya, L.G., ve Yılmaz, B. (2010). Biyoiklimsel Konforun Peyzaj Planma Sürecindeki Etkinliği: Kütahya Örneği. Turkish Journal of Foresty, 1(1), 83-95.
  • Deniz, A., & Güngör, Ş. (2020). Mapping with unmanned aerial vehicles systems: A case study of Nevsehir Haci Bektas Veli University Campus. Kastamonu University Journal of Engineering and Sciences, 6(1), 27-32.
  • Doğan, M., Vural, E., & Avcı, T. (2020). Determination of Comfort Areas According to the Wind Chill Index of the Central Anatolia Region. Kastamonu University Journal of Engineering and Sciences, 6(2), 84-94.
  • Epstein, Y., & Moran, D. S. (2006). Thermal comfort and the heat stress indices. Industrial health, 44(3), 388- 398.
  • Givoni, B., 1963. Evaluation of the effect of climate on man: development of a new thermal index. Research Report to UNESCO. Building Research Station, Technion, Israel Institute of Technology, Haifa, Israel.
  • Gómez, F., Cueva, A. P., Valcuende, M., & Matzarakis, A. (2013). Research on ecological design to enhance comfort in open spaces of a city (Valencia, Spain). Utility of the physiological equivalent temperature (PET). Ecological engineering, 57, 27-39.
  • Höppe, P. (1999). The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. International journal of Biometeorology, 43(2), 71-75.
  • Höppe, P., 1999. The physiological equivalent temperature - A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75.
  • Jendritzky, G., de Dear, R., 2009. Adaptation and thermal environment. Biometeorology for adaptation to climate variability and change. Springer, 9–32.
  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS Geostatistical Analyst. In Analysis (Vol. 300, Issue December).
  • Kum, G., (2011). İklim Değişikliğinin Türkiye’nin Güneybatı Kıyılarında Turizm Konfor Şartlarına Etkileri. Doktora Tezi. İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı.
  • Kurtzman, D., & Kadmon, R. (1999). Mapping of temperature variables in Israel: sa comparison of different interpolation methods. Climate research, 13(1), 33-43.
  • Kyle, W.J., 1994. The human bioclimate of Hong Kong. Proceedings of the Contemporary Climatology Conference, Brno. Tisk Litera, Brno., 345–350.
  • Maarouf, A.R., MunnR. E. (2005). Bioclimatoogy İçinde Encyclopedia of World Climatology, Oliver, E., J.i Springer, Dordrecht. 158-165.
  • Mansuroğlu, S., Dağ, V., & Kalaycı Önaç, A. (2021). Attitudes of people toward climate change regarding the bioclimatic comfort level in tourism cities; evidence from Antalya, Turkey. Environmental Monitoring and Assessment, 193(7), 1-16.
  • Masterton, J.M., Richardson, F.A. 1979. Humidex: a method of quantifying human discomfort due to excessive heat and humidity. Atmospheric Environment Service, CLI. Downsview, Ontario/Environment Canada, Atmospheric Environment, 1–79p.
  • Matzarakis, A., & Amelung, B. (2008). Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In Seasonal forecasts, climatic change and human health (pp. 161-172). Springer, Dordrecht.
  • Matzarakis, A., Helmut, M., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 76–84.
  • Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International journal of biometeorology, 43(2), 76-84.
  • Matzarakis, A., Rudel, E., Zygmuntowski, M., & Koch, E. (2010). Bioclimatic maps for tourism purposes. Physics and Chemistry of the Earth, Parts A/B/C, 35(1-2), 57-62.
  • Mayer, H., Höppe, P., 1987. Thermal comfort of man in different urban environments. Theor Appl Climatol, 38,43–49.
  • Mieczkowski, Z. (1985). The tourism climatic index: a method of evaluating world climates for tourism. Canadian Geographer/Le Géographe Canadien, 29(3), 220-233.
  • Olgyay, V. (1973). Design With Climate: Bioclimatic Approach to Architectural Regionalism Princeton University Press. In Princeton, New Jersey.
  • Osczevski, R. J. (1995). The basis of wind chill. Arctic, 372-382.
  • Öztürk, M. Z., Çetinkaya, G., & Aydın, S. (2017). Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri. Coğrafya Dergisi, (35), 17-27.
  • Pickup, J., & de Dear, R. (2000, November). An outdoor thermal comfort index (OUT_SET*)-part I-the model and its assumptions. In Biometeorology and urban climatology at the turn of the millenium. Selected papers from the Conference ICB-ICUC (Vol. 99, pp. 279-283).
  • Samanta, S., Pal, D. K., Lohar, D., & Pal, B. (2012). Interpolation of climate variables and temperature modeling. Theoretical and Applied Climatology, 107(1), 35-45.
  • Sancar, M. C., & Güngör, Ş. (2020). A review of bioclimatic comfort areas determined by the new summer index in terms of tourism in Antalya. Acta Biologica Turcica, 33(1), 53-63.
  • Sancar, M.C., (2022). Antalya İli Biyoklimatik Konfor Şartlarının Coğrafi Bilgi Sistemleri Tabanlı Analizi. Yüksek Lisans Tezi. Nevşehir Hacı Bektaş Veli Üniversitesi, Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı.
  • Sharma, M.R., Sharafat, A., 1986. Tropical Summer Index – A Study of Thermal Comfort of Indian Subjects, Building and Environment, 21 (1), 11-24.
  • Steadman, R. G. (1979). The assessment of sultriness. Part I. A temperature-humidity index based on human physiology and clothing science. In Journal of Applied Meteorology (Vol. 18, Issue 7, pp. 861–873).
  • Steadman, R. G. (1984). A universal scale of apparent temperature. In Journal of Climate & Applied Meteorology (Vol. 23, Issue 12, pp. 1674–1687).
  • Şensoy, S. , Türkoğlu, N. , Çiçek, İ. & Matzarakis, A. (2020). Antalya'nın Termal Konfor Özellikleri, İklim Model Verileri Kullanılarak Gelecek Projeksiyonları ve Turizme Etkileri . Coğrafi Bilimler Dergisi , 18 (2) , 124-160 . Retrieved from https://dergipark.org.tr/tr/pub/aucbd/issue/55854/706150
  • Thom, E. C. (1959). The discomfort index. Weatherwise, 12(2), 57-61.
  • Yaglou, C. P., & Minaed, D. (1957). Control of heat casualties at military training centers. Arch. Indust. Health, 16(4), 302-16.
  • Yang, W., Zhao, Y., Wang, D., Wu, H., Lin, A., & He, L. (2020). Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang river in Huangshan, China. International journal of environmental research and public health, 17(8), 2942.
  • Yuka, P. & Toroğlu, E. (2021). Investigation Of Bioclimatic Comfort Structure In Muğla With The Help Of Geographical Information Systems. Kastamonu University Journal of Engineering and Sciences, 7(2), 155- 166.
  • Zahid, M., & Rasul, G. (2010). Rise in Summer Heat Index over Pakistan. Pakistan Journal of Meteorology, 6(12), 85–96.