Bazı Baklagil Kaba Yemlerinin İn Vitro Gaz Üretimi, Metabolik Enerji, Organik Madde Sindirimi ve Mikrobiyal Protein Üretimlerinin Karşılaştırılması

Bu çalışmada, yonca (Medicago sativa L.), adi fiğ (Vicia sativa L.), bezelye (Vicia sativum L.), gazal boynuzu (Lotus corniculatus L.) ve kolza (Brassica napus L.) gibi baklagil kuru otlarının kimyasal bileşimleri, in vitro gaz üretimleri, metabolik enerji (ME), sindirilebilir organik maddeleri (SOM) ve mikrobiyal protein üretimleri (MPÜ) karşılaştırılmıştır. Gaz ölçümleri 3, 6, 12, 24, 48, 72 ve 96 saat aralıklarla saptanmıştır. Baklagil kuru otlarının kimyasal bileşimleri arasında önemli farklılıklar saptanmıştır (P

Comparison of In vitro Gas Production, Metabolizable Energy, Organic Matter Digestibility and Microbial Protein Production of Some Legume Hays

The aim of this study was to compare the chemical composition, in vitro gas production, metabolizable energy (ME), organic matter digestibility (OMD) and microbial protein (MP) production of the legume hays from alfalfa (Medicago sativa L.), common vetch (Vicia sativa L.), pea (Pisum sativum L.), birdsfoot trefoil (Lotus corniculatus L.) canola (Brassica napus L.). Gas production was determined at 0, 3, 6, 12, 24, 48, 72 and 96 h. There were significant differences among legume hays in terms of chemical composition (P<0.05). The crude protein content of legume hays ranged from 16.82 to 20.79%; ether extract from 3.46 to 5.16%; crude ash 5.74 to 8.37%; neutral detergent fiber (NDF) from 36.05 to 46.00%; acid detergent fiber (ADF) from 26.60 to 37.79% and acid detergent lignin (ADL) 7.41-13.23%. Chemical composition had a significant effect on the gas production kinetics (P<0.05). Total gas production ranged from 68.37 to 75.40 ml/200 mg DM, organic matter digestibility (OMD) from 71.77 to 78.29%, ME from 10.68 to 11.22 MJ/kg DM and microbial protein (MP) production from 110.89 to 124.31 g/kg DM. The total gas production, OMD, ME and MP of canola hay was significantly lower than the other legume hays (P<0.05).

___

  • Açıkgöz E. 2001. Yem Bitkileri. III: Baskı. U.Ü. Güçlendirme Vakfı Yay. No: 182, VİPAŞ Yay. No: 58, 584 s.
  • ARC. 1984. Report of the protein group of the agricultural research council working party on the nutrient requirements of ruminants. In: the nutrition requuirements livistock. Surrey: The Gresham Press.
  • Association of Official Analytical Chemists (AOAC). 1990. Official Method of Analysis. 15th.ed. Washington, DC. USA. pp.66-88.
  • Beever D.E. 1993. Ruminant animal production from forages present position and future opportunities. In Gerassland for Our World (M Beker, editor). Wellington: SIR Publishing.
  • Blümmel M., Karsli A. and J.R. Russell. 2003. Influence of diet on growth yields of rumen micro- organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products. Br. J. Nutr. 90. 625–634.
  • Blümmel M., Makkar H.P.S. and K. Becker.1997. In vitro gas production: A technique revisited. J Anim Physiol Anim Nutr, 77, 24-34.
  • Brown W.F. and W.D. Pittman. 1991. Conservation and degradation of nitrogen and fiber fraction in selected tropical grasses and legumens. Trop Grassl 25, 305.
  • Canbolat Ö. 2013. Farklı Olgunlaşma Dönemlerinin Kolza Otunun (Brassica napus L.) Besleme Değeri Üzerine Etkisi. 60 (2). 145-150.
  • Canbolat Ö. ve Ş. Karaman. 2009. Bazı Baklagil Kaba Yemlerinin in Vitro Gaz Üretimi, Organik Madde Sindirimi, Nispi Yem Değeri ve Metabolik Enerji İçeriklerinin Karşılaştırılması. Tarım Bilimleri Dergisi, 15 (2) 188-195.
  • Clark J.H., Klusmeyer T.H. and R.M. Cameron. 1992. Microbial protein seynthesis and flow of nitrogen fractions to the duedonum of dairy cows. J. Dairy Sci. 75, 2304.
  • Cone J.W. and A.H. Van Gelder. 1999. Influence of protein fermantation on gas production profiles. Anim. Feed Sci. Technol. 76:251-256.
  • Demeyer D. and C. Van Nevel. 1986. ınfluence on substrate and microbial interaction on efficiency of rumen microbial growth. Reprod. Nutr. Developm. 26: 161-179.
  • Ensminger M.E., Oldfield J.E. and W.W. Heinemann. 1990. Feed and Nutrition. The Ensminger Publishing Company, 1544 pp.
  • Filya I., Karabulut A., Canbolat Ö., Degirmencioglu T. ve H. Kalkan. 2002. Investigations on determination of nutritive values and optimum evaluation conditions by animal organisms of the foodstuffs produced at bursa province by in vivo and in vitro methods. Uludag Universitesi Ziraat Fakultesi Bilimsel Arastirmalar ve Incelemeler Serisi. No: 25, Bursa, pp: 1-16.
  • Getachew G., Blümmel M., Makar H.P.S. and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science Technology, 72:261- 281.
  • Getachew G., Crovetto G.M., Fondevila M., Krishnamoorthy U., Singh B., Spanghero M., Steingass H., Robinson P.H. and M.M. Kailas. 2002. Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds. Animal Feed Science Technology, 102:169-180.
  • Getachew G., DePeters E.J. and P.H. Robinson. 2004. In vitro gas production provides effective method for assessing ruminant feeds. California Agriculture 58:54-58.
  • Kamalak A., Canbolat O., Erol A., Kilinc C., Kizilsimsek M., Ozkan C.O. and E. Ozkose. 2005a. Effect of variety on chemical composition, ın vitro gas production, metobolizable energy and organic matter digestibility of alfalfa hays. Volume 17, Article #77. Retrieved July 2, 2005, from. http://www.cipav.org.co/lrrd/lrrd17/7/kama17077.htm.
  • Kamalak A., Canbolat O., Gurbuz Y., Erol A. and O. Ozay. 2005b. Effect of maturity stage on chemical composition, ın vitro and ın situ dry matter degradation of tumbleweed hay (Gundelia Tournefortii L.). Small Ruminant Research 58: 149–156.
  • Kamalak A., Canbolat O., Gurbuz Y., Ozay O. and E. Ozkose. 2004. Variation in metabolizable energy content of forages estimated using in vitro gas production. Pakistan Journal of Biological Sciences. 7(4):601-605.
  • Karabulut A., Canbolat O., Kalkan H., Gurbuzol F., Sucu E. and I. Filya. 2007. Comparison of ın vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Aust. J. Anim. Sci. 20(4):517-522.
  • Karslı M.A. and R.J. Russell. 2002. Effects of sources and consentrations of nitrogen and carbohydrate on ruminal microbial protein synthesis. Turk. J. Vet. Amin. Sci. 26: 201-207.
  • Leng R.A. 1993. Quantitative ruminant nutrient-a gren science. Aust. J. Agri Sci 44, 363-380.
  • Makkar H.P.S., Blümmel M. and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implications in gas production and true digestibility in in vitro techniques. Br J Nutr, 73, 897-933.
  • Makkar H.P.S., Blümmel M. and K. Becker. 1997. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim Feed Sci Technol, 67, 245-251.
  • Menke K.H. and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. and Dev. 28:9-55.
  • Menke K.H., Raab L., Salewski A., Steingass H., Fritz D. and W. Schneider. 1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. Journal of Agricultural Science, 93: 217-222.
  • Morrison F.B. 1956. Feeds and feeding. 22. Edition, The Morrison Publ. Comp. Ithaca, NY.1165 pp.
  • Norton B.W. 2003. The nutritive value of tree legumes. http://www.fao.org/ag/AGP/AGPC/doc/Publicat/Gutt-shel/x5556e0j .htm. pp.1-10
  • Öztürk D., Kizilsimsek M., Kamalak A., Canbolat O. and C.O. Ozkan. 2006. effects of ensiling alfalfa with whole maize crop on the chemical composition and nutritive value of silage mixtures. Asian-Aust. J. Anim. Sci. Vol 19, No. 4: 526–532.
  • Parissi Z.M., Papachristou T.G. and A.S. Nastis. 2005. Effect of drying method on estimated nutritive value of browse species using an in vitro gas production technique. Animal Feed Science and Technology, Volumes 123-124, Part 1, 30. 119-128.
  • Ranilla M.J., Lopez S. and M.D. Carro1. 2002. Effect of fibre source on the efficiency of microbial synthesis by mixed microorganisms from the sheep rumen in vitro. http://www.bsas.org.uk/meetings/annlproc/Pdf2001/151.pdf
  • Sinclair L.A., Garnsworthy P.C., Newbold J.R. and P.J. Buttery. 1995. Effects of synchronizing the rate of dietary energy and nitrogen in diets with similar carbohydrate composition on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci 124, 463–472.
  • Snedecor G.W. and W. Cochran. 1976. Statistical Methods. The Iowa State Univ. Pres. Amer. IA. USA.
  • Stastica 1993. Stastica for windows release 4.3, StatSoft, Inc. Tulsa, OK.
  • Van Soest P. and J.B. Robertson. 1985. A laboratory manual for animal science 612. Ithaca, Ny: Cornell. University Press.
  • Van Soest P.J., 1994. Nutritional ecology of the ruminant, 2 nd ed., Ithaca, NY: Cornell University Press.