EYLÜL 2015 HATAY ÇÖL TOZU TAŞINIMI DEĞERLENDİRMESİ

Çöl tozu taşınımı olayı gerek fiziki gerekse de beşeri yönüyle son dönemde oldukça dikkat çeken konular arasındadır. Dünya'da geniş ölçekte çöl tozları taşınımı için ana kaynak bölgeleri ve taşınım yolları üzerinde bulunmasa da Türkiye, zaman zaman çöl tozlarının etkisinde kalmaktadır. Özellikle Güneydoğu Anadolu ve Doğu Akdeniz, çöl tozlarından en çok etkilenen bölgeler arasındadır. Türkiye'de çöl tozları taşınımı ile ilgili yapılan pek çok çalışma olmasına rağmen, mekânsal bir bakış açısı ile yapılmış model değerlendirmeleri ve toz taşınımının hava kütleleri ile ilişkisinin incelendiği çalışmalar oldukça sınırlı sayıdadır. Yapılan bu çalışmada; Eylül 2015'de Hatay ve çevresinde etkili olan çöl tozu taşınımının, mekâna ve zamana göre dağılışının değerlendirilmesi amaçlanmıştır. Bu amaçla; T.C. Çevre ve Şehircilik Bakanlığı'nca Antakya ve İskenderun merkezli olmak üzere iki adet yersel ölçümlerin yanı sıra HYSPLIT back trajectory kullanılmıştır. Ayrıca SKIRON modeli de bu çalışma kapsamında değerlendirilmiştir. 7 Eylül 2015'de havadaki PM10 oranının İskenderun için; 10 Eylül'de ise Antakya için maksimum seviyeye ulaştığı görülmüştür. SKIRON modeli sonuçları ile ilgili bakanlık verilerinin farklı olduğu tespit edilmiştir. Bunun nedenin ise modelde girdi düşünülmektedir. Bu sonuçlar, genel olarak Türkiye'nin güneyinden gelen cTw (Contitental Tropikal Warm) tipi bir hava kütlesinin yaşanan bu olaydan sorumlu olduğunu göstermektedir. Farklı nedenlere bağlı olarak şekil üzerinde artmalar ve azalmalar haricinde özellikle taşınım dönemindeki hasta yoğunluğu da önemli bir bulgudur. Ayrıca, Mustafa Kemal Üniversitesi (MKU) Sağlık Uygulama ve Araştırma Hastanesi'ne solunum yolu rahatsızlığı şikayetiyle gelenler ile Antakya PM10 değerleri arasında 0,68; İskenderun PM10 değerleri ile yine aynı şikayetle gelen hasta sayıları arasında 0,62 değerinde pozitif bir korelasyon değeri bulunmuştur. İskenderun ve Antakya PM10 değerleri ve hasta sayıları için yapılan çoklu regresyon analizi sonucunda ise r2 değeri 0,73 olarak hesaplanmıştır. Dolayısı ile özellikle solunum yolu rahatsızlığı yaşayan insanların çöl tozu taşınım dönemlerinde hassas oldukları, gerekli tedbirlerin kişisel ve toplumsal bazda alınmasının bir zorunluluk olduğu anlaşılmıştır

DESERT DUST TRANSPORT ASSESSMENT IN HATAY IN SEPTEMBER 2015

Recently desert dust transport is one of the important issues not only in the physical aspect but also in the human aspect. Even though Turkey is not among the main source areas and routes for the transportation of the large-scale desert dust in the world, the country is located in the region which is from time to time under the influence of desert dust. In particular, South East and East Mediterranean are the regions most affected by the desert dust. Although there are many studies on desert dust transport in Turkey, the number of the studies made with spatial perspective model evaluation and studies examining the relationship between the mass of air and dust transportation is quite limited. The aim of this study is to evaluate the desert dust which was influential throughout Turkey in September 2015 in terms of time and space distribution in Hatay with a spatial perspective. In addition to the local measurements of Turkish Republic Ministry of Environment and Urban Planning in Antakya and Iskenderun stations, HYSPLIT back trajectory was used. Moreover, SKIRON model was also implemented in this study. The analysis show that PM10 ratio reached to maximum level on September 7, 2015 in Iskenderun, but on September 10, 2015 in Antakya. However, it was founded that SKIRON model results and data of the Ministry did not overlap, which might be due to the quality of the input data and the different spatial resolution. It can be concluded that Ctw (Contitental Tropikal Warm) type of air mass that comes from the south of Turkey is responsible for this incident. Especially the density in the number of the patients during transport is an important data except for small increases and decreases due to irrelevant reasons. In addition, a positive correlation of 0,62 value was found between Antakya PM10 value and the patients admitted with respiratory distress to Mustafa Kemal University (MKU) Health Application And Research Hospital. As a result of multiple regression analysis between the Iskenderun and Antakya PM10 values and the patient numbers, the r2 value is calculated as 0,73. Since it has been understood that people with respiratory distress are particularly vulnerable to desert dust transfer, the necessary precautions should be taken individually and socially. STRUCTURED ABSTRACT Recently desert dust transport is one of the important environmental problems not only in the physical aspect but also in the human aspect. Turkey is located in the area affected by desert dust from time to time, even though it is not located on major source zones and transportation routes for desert dust transport on a large scale in the world. In particular, South Eastern Anatolia and Eastern Mediterranean are the regions most affected by the desert dust, occasionally. Although there are many studies on desert dust transport in Turkey, the number of the studies made with spatial perspective model evaluation and studies examining the relationship between the mass of air and dust transportation is quite limited. The aim of this study is to evaluate the distribution of desert dust transportation which was influential throughout the southern Turkey (particularly in Hatay and its surroundings) in September 2015 in terms of time and space distribution with a spatial perspective. Beside the local measurement data of Turkish Republic Ministry of Environment and Urban Planning in Antakya and Iskenderun stations, HYSPLIT back trajectory was used to achieve our goal. Moreover, SKIRON model was also implemented in this study. Finally, MODIS AQUA/AIRS Dust Score data used in the study has provided daily monitoring the change of dust amounts according to time and place. In the case of desert dust transfer in Hatay and its surroundings in September 2015, the related ministry data indicates that the maximum PM10 ratio (455μg / m3) is dated September 10 (Table 1). According to the back trajectory (HYSPLIT REANALYSIS) analysis, it is understood that southern air currents on 500, 1500 and 3000 m surface weather chart are responsible for desert dust transfer which is occurred in Antakya (Fig. 4). While the deserts of Iraq and Syria has seen at the 500 and 1500 m levels (red and blue lines respectively) as the source region; at the 3000 m level, the deserts of Saudi Arabia, Jordan and Syria are seen as the source region (Fig. 4). Similarly, in the backward trajectory analysis a mass of air coming through Syria and Lebanon is the reason for this desert dust transport occurred in September 2015. The analysis show that PM10 ratio reached to maximum level on September 7th, 2015 in Iskenderun, but the maximum level in Antakya was detected on September 10th, 2015. It was found that SKIRON model results and data from the Ministry did not match, which might be due to the quality of the input data and the different spatial resolution. It can be concluded that CTw (Contitental Tropikal Warm) type of air mass that comes from the south of Turkey is responsible for this incident. SKIRON model ((http://forecast.uoa.gr/) which is using various parameters to make 5-day forecast in different options has been evaluated for this dust transport event. For example; the model estimated the desert dust concentration as 425.2 μg / m³ for Hatay vicinity on 8 September (Fig. 9a), while the PM10 value was measured as 0 (zero) for Antakya and Iskenderun on the same day. The near-surface dust concentration was 1064.4 μg / m³ for 10 September; These value approximately for Antakya was 455 (Table 2) and for Iskenderun was 505 μg / m³ (Table 3). According to the results of MODIS Aqua/Airs Image Dust Scores obtained between 6-13 September 2015; there is no dust cloud on September 6th, but there is a very large area of dust cloud on September 7th, when transportation is most intense. It is observed that the dust cloud which continued changing shape and direction between September 8th and September 12th 2015 completely abandoned the region on September 13, 2015 (Fig. 10). The colors and values on the scales on the left side of the map for each day, ranging from light yellow to brown, point out the size and distribution of transport by time and place. There is a highly dense dust transport observed between September 7th and September 11th 2015, especially on September 7th (Fig. 10). In the light of similar studies which emphasize the importance of the effect of desert dust on human health; the period of dust transport was compared with other days by taking statistical information of patients who complained respiratory tract complaints in September 2015 from the Mustafa Kemal University Health Practice and Research Hospital Chief Physician (Fig. 11). There was a dramatic rise in the number of patients with respiratory complaints on September 7, 2015 at the first day of desert dust transport (Fig. 11). Especially the density in the number of the patients during transport is an important data except for small increases and decreases due to irrelevant reasons. In addition, a positive correlation of 0.62 value was found between Antakya PM10 value and the patients admitted with respiratory distress to MKU Research Hospital. As a result of multiple regression analysis between the Iskenderun and Antakya PM10 values and the patient numbers, the r2 value is calculated as 0.73. Since, it has been understood that people with respiratory distress are particularly vulnerable to desert dust transfer, the necessary precautions should be taken individually and socially. As a result; Turkey is located in a region that is close to desert regions and at the same time sensitive to climate change due to its location. For this reason, it is necessary to examine the characteristics of desert dust transport which has a very important effect on the living things, which occurs quite frequently. According to the results the desert dusts transfer, which is effective in the region, completely ended on September 13, 2015. TSMS (Turkish State Meteorological Service) released an early warning through their website about these desert dust transport. Nevertheless, more precautions should be taken for desert dust transports and it is crucial to make a regional modeling

___

  • Anıl, İ., Karaca, F., Alagha, O., (2009). İstanbul'a Uzun Mesafeli Atmosferik Taşınım Etkilerinin Araştırılması: Solunabilen Partikül Madde Epizotları, Ekoloji 19 (73), 86-97.
  • Aytaç, A.S., Semenderoğlu, A., (2014). Amanos Dağlarının Orta Kesimi Ve Yakın Çevresinin İklim Özellikleri, Turkish Studies Dergisi, 9 (2), 251-289.
  • Bağcı, R., Şengün, T. (2012). Çöl Tozlarının Beşeri Çevre Ve Bitkiler Üzerindeki Etkileri. Marmara Coğrafya Dergisi, 24,409-433.
  • Barcelona Çöl Tozu Tahmin Merkezi, Barcelona Dust Forecaster Center, Erişim 26 Haziran 2016, kaynak http://dust.aemet.es/
  • Chun, Y., Boo, K.O., Kim, J., Park, S.U., Lee, M. (2001). Synopsis, Transport, and Physical Characteristics of Asian dust in Korea. Journal of Geophysıcal Research 106(D16), 18-469.
  • De Longueville, F., Hountondji, Y.C., Henry, S., and Ozer, P. (2010). What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions?, Science of the Total Environment. 409, 1–8.
  • Dreher, J.G., (2009). Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications, NASA Contractor Report NASA/CR-2009- 214764.
  • Dündar C, Oğuz K, Güllü G., (2013). Doğu Akdeniz Havzasında Kum ve Toz Fırtınalarının (SDS) İncelenmesi. 10.Ulusal Çevre Mühendisliği Kongresi, 12-14 Eylül, 343-348.
  • Evan, A.T.,F., Flamant, C., Gaetani, M., Guichard, F. (2016). The past, present and future of African Dust. Nature, 531, 493-507.
  • Fattahi, E., Noohi, K., Shiravand, H. (2012). Study of Dust Storm Synoptical Patterns in Southwest of Iran. Desert, 17, 49-55.
  • Heinzherling, D., (2005). Hysplit Trajectory Modeling And Clustering Techniques: Computation, Error Analysis, And Applications, The University Of Texas At Austin Plan II Honors Program And Department Of Civil Engineering.
  • Işık, A.G., Oğuz, K., Oğuz, E., Dündar, C. (2015). Toz-Yağış İlişkisinin Uydu Verileri ile İncelenmesi. Erişim 2 Aralık 2015, kaynak https://www.researchgate.net
  • Kabataş, B., Ünal, A., Pierce, R.B., Kindap, T., Pozzoli, L., (2014). The Contribution of Saharan Dust in Pm10 Concentration Levels in Anatolian Peninsula of Turkey, Science of The Total Environment, 488–489, 413–421.
  • Kallos, G., Papadopoulos, A., Katsafados, P., S. Nickovic, (2006). Trans-Atlantic Saharan Dust Transport: Model Simulation and Results. Journal of Geophysical Research 111, doi:10.1029/2005JD006207.
  • Karabulut, M., Sandal, E.K., Gürbüz, M., (2007). 20 Kasım-9 Aralık 2001 Mersin Sel Felaketleri: Meteorolojik ve Hidrolojik Açıdan Bir İnceleme, KSÜ Fen ve Mühendislik Dergisi, 10(1), 13- 24.
  • Karataş, A., Korkmaz, H., (2012). Hatay İli’nin Su Potansiyeli ve Sürdürülebilir Yönetimi, Mustafa Kemal Üniversitesi Yayınları No:40, Antakya.
  • Korkmaz, H., (2008a). Antakya-Kahramanmaraş Graben Alanında Kurutulan Sulak Alanların (Amik Gölü, Emen Gölü ve Gâvur Gölü Bataklığı) Modellerinin Oluşturulması, Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5 (9), 19-37.
  • Korkmaz, H., (2008b). Amik Ovasında Kurak Devre İle Buğday, Pamuk Ve Mısır Tarımı Arasındaki İlişki, Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 6 (11), 56-68.
  • Korkmaz, H., (2009). Amik Gölünün Kurutulmasının Yöre İklimine Etkileri, Mustafa Kemal Üniversitesi Yayınları, No:22, Antakya.
  • Korkmaz, H., Fakı, G., (2009). Kuzeyr Platosu’nun İklim Özellikleri, MKÜ Sosyal Bilimler Dergisi, 6 (12), 324-350.
  • Kwon, H. J., Cho, S. H., Chun, Y., Lagarde, F. and Pershagen, G., (2002). Effects of the Asian Dust Events on Daily Mortality in Seoul, Korea. Environmental Research, 90, 1–5.
  • Meteoroloji Genel Müdürlüğü (MGM), Toz Taşınımı Uyarı Sistemi, Erişim, 7-13 Eylül 2015. kaynak http://www.wdcc.mgm.gov.tr/sds.aspx?s=12&t=p&b=me&c=conc&y
  • Nasa Worldview, Erişim 6 Mayıs 2016, kaynak https://worldview.earthdata.nasa.gov/
  • Noaa Arl Hysplit Model, Erişim 20 Eylül 2015 ve 13 Nisan 2016 kaynak http://ready.arl.noaa.gov/HYSPLIT.php
  • Northern Africa-Middle East-Europe (NA-ME-E) Regional Center, WMO Sand and Dust Storm Warning Advisory and Assesment System ( SDS-WAS), Erişim 26. Haziran 2016, kaynak http://sds-was.aemet.es/
  • Oğuz, K., Dündar, C., Pekin, M.A. (2015). 7-12 Eylül 2015 tarihli Toz Fırtınasının Uzaktan Algılama Verileri ile Analizi. Erişim 3 Mayıs 2016, kaynak https://www.researchgate.net
  • Oğuz, K., Pekin, M.A., Dündar, C. (2013). Uzaktan Algılama Verileri ile Toz Taşınımı Analizi. I. Meteorolojik Uzaktan Algılama Çalıştayı, 5-7 Kasım 2013, Antalya.
  • Öztaner, Y.B., Kahraman, A., Çalışkan, E., Tilev Tanrıöver, Ş., Kahya, C., Aksoy, B., İncecik, S., Topçu, S., Aslan, S., Barutçu, B., Sezen, İ., Sakarya, S., Deniz, A. (2014). Hava Kirliliği Araştırmaları Dergisi, Açık Gökyüzü Şartlarında Güneş Radyasyonunun WRF Modeli ile Kısa Vadeli Tahmininde Aerosol Etkisinin Değerlendirilmesi, 3, 2-11.
  • Rozwadowska A., Zielinski T., Petelski T., Sobolewski P., (2010). Cluster Analysis Of The Impact Of Air Back-Trajectories On Aerosol Optical Properties At Hornsund,Spitsbergen, Atmospheric Chemistry and Physics, 10(3), 877–893.
  • Şengün, M.T. ve Kıranşan, K. (2012). Çöl Tozlarının Türkiye’de Doğal Ve Beşeri Ortam Üzerine Etkisi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 22(2), 1-15.
  • Şengün, T. ve Kıranşan, K. (2013). Sahra Çölü Tozlarının Akdeniz Havzasına Etkisi, 3rd International Geography Symposium - GEOMED 2013. In R. Efe, İ. Atalay, İ. Cürebal (Eds.). Symposium Proceedings (pp.582-596), Kemer, Antalya, TURKEY, 10 – 13 Haziran 2013.
  • Şensoy, S., Demircan, M., (2016b), State of the Climate in Turkey in 2015, Erişim 17.06.2016, kaynak www.mgm.gov.tr/files/en-US/State_of_the_Climate_in_Turkey_in_2015.pdf
  • Şensoy, S., Demircan, M., Ulupınar, Y. (2016a). Climate of Turkey. Erişim 17.06.2016, kaynak http://www.mgm.gov.tr/files/en-us/climateofturkey.pdf
  • Tan, M. (2016). Exploring The Relationship Between Vegetation and Dust-Storm İntensity (DSI) in China. Geographical Sciences, 26(4), 387-396
  • Tanaka, T., Chiba, M., (2006). A Numerical Study of the Contributions of Dust Source Regions to the Global Dust Budget. Global and Planetary Change 52, 88–104
  • Türkeş, M. ve Tatlı, H. (2011). Türkiye Yağış Bölgelerinvin Spektral Kümeleme Tekniğiyle Belirlenmesi, In: Proceedings of the National Geographical Congress with International Participation (CD-R), ISBN 978-975-6686-04-1, Türk Coğrafya Kurumu: İstanbul.
  • University Of Athens (AM&WFG), Skiron Modeli, Erişim 7-13 Eylül 2015, kaynak http://forecast.uoa.gr/dustindx.php?domain=med
  • Vishkaee, F.A., Flamant, C., Cuesta, J., Flamant, P. and Khalesifard, H. (2011). Multiplatform Observations Of Dust Vertical Distribution During Transport Over Northwest Iran İn The Summertime. Journal of Geophysical Research, 116, 1-13.