Tedavi almamış malignite tanılı hastaların PET/BT görüntülemesinde kemik iliği 18-F FDG tutulum ölçümleri ile hematolojik parametreler arasındaki korelasyon

Amaç: Bu çalışmanın amacı, Pozitron Emisyon Tomografisi/Bilgisayarlı Tomografi (PET/BT) çalışmalarında, kemik iliğinde (Kİ) F-18 işaretli Florodeoksiglukoz’un (FDG) tutulumu ile hematolojik parametreler arasındaki korelasyonu araştırmaktı. Gereç ve Yöntemler: Kliniğimizde PET/BT çalışması yapılan ve PET/BT çekiminden 5 gün öncesi veya 5 gün sonrasına ait lökosit (WBC), eritrosit (RBC), trombosit (Plt) sayıları; hemoglobin (Hgb) konsantrasyonu, hematokrit (Hct) değerlerine ulaşılan 105 hasta çalışmaya dahil edildi. Tüm hastalar malignite tanılıydı ve cerrahi tedavi, kemoterapi (KT) ve/veya radyoterapi (RT) almamıştı. Kemiğe ve/veya Kİ’ne ve karaciğere (KC) ait malign veya benign hastalık bulgusu yoktu; PET/BT görüntülemesinden önce kan transfüzyonu, sitokin tedavisi uygulanmamıştı. Kİ’ne ait FDG tutulumları, alt torakal ve üst lomber vertebralarda “Standard Uptake Value mean” (SUVmean) değerleri olarak ölçüldü ve Kİ SUV değerinin KC SUV değerine oranı; tutulum oranı (TO) olarak hesaplandı. Kİ SUV ve TO değerleri ile çeşitli hematolojik parametreler arasındaki korelasyon değerlendirildi. Bulgular: Kİ SUV değerleri ile hematolojik parametreler arasındaki korelasyon anlamlı değildi. Anlamlı pozitif korelasyon TO ile WBC sayısı ve WBC alt grubu olan nötrofil sayısı arasında (p

Correlation between bone marrow 18-F FDG uptake and hematological parameters in PET/CT scans of untreated malignancy patients

Objective: The aim of this study was to investigate the correlation between bone marrow (BM) F-18 fluoro-2-deoxyglucose (FDG) uptake in Positron Emission Tomography/Computed Tomography (PET/CT) and hematological parameters. Material and Methods: In our clinic, 105 patients who underwent PET/CT imaging and with existing hematological parameters (white blood cell (WBC , red blood cell (RBC), platelet (Plt) counts, hemoglobin concentration (Hgb), hematocrit (Hct)) within 5 days before or after the PET/CT imaging were included in this study. All patients were diagnosed with malignancy, and did not have surgery, chemotherapy and/or radiotherapy. There wasn&#8217;t any evidence of bone/bone marrow and liver involvement by malignant or benign diseases; blood transfusions and cytokines had not been given before the PET/CT imaging. FDG uptake by bone marrow was measured as a standardized uptake value mean (SUVmean) on lower thoracic and upper lumbar vertebrae and the uptake ratio (UR) of the SUV of bone marrow to the SUV of liver was calculated. The correlation between SUV of BM and UR with various hematological parameters was investigated. Results: The correlation between SUV of BM and hematological parameters were not significant. A significant positive correlation was found between UR and WBC counts, neutrophil counts (p<0,01), and a significant negative correlation was found between UR and Hgb concentration (p<0,05). However, RBC, Plt, other WBC subgroups except for neutrophil counts and Hct was not correlated with UR. Conclusion: While evaluating FDG uptake in BM at PET/CT imaging, the WBC and neutrophil counts and Hgb concentration should be taken into consideration. The significancy of UR should be kept in mind while examining the effect of hematological parameters on BM,

___

  • 1. Cook GJ, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999;26:1363–78.
  • 2. Chiang SB, Rebenstock A, Guan L, Alavi A, Zhuang H. Diffuse bone marrow involvement of Hodgkin lymphoma mimics hematopoietic cytokine-mediated FDG uptake on FDG PET imaging. Clin Nucl Med 2003;28:674–6.
  • 3. Yao WJ, Hoh CK, Hawkins RA, et al. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 1995;36:794–9.
  • 4. Knopp MV, Bischoff H, Rimac A, Oberdorfer F, Van Kaick G. Bone marrow uptake of fluorine- 18-fluorodeoxyglucose following treatment with hematopoietic growth factors: initial evaluation. Nucl Med Biol 1996;23:845–9.
  • 5. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine- 18-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998;16:173–80.
  • 6. Hollinger EF, Alibazoglu H, Ali A, Green A, Lamonica G. Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 1998;23:93 – 8.
  • 7. Inoue K. Goto R. Okada K, Kinomura S. Fukuda H. A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hyperactivity. Ann Nucl Med 2009;23:643-9.
  • 8. Van de Wiele C, Van deVyvere F, Debruyne C, Philippe J, Van Meerbeeck JP. FDG uptake by the bone marrow in NSCLC patients is related to TGF-beta but not to VEGF or G-CSF serum levels. Eur J Nucl Med Mol Imag 2008;35:519–22.
  • 9. Prevost S, Boucher L, Larivee P, Boileau R, Benard F. Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 2006;47:559–65.
  • 10. Cicone F, Loose D, Deron P, et al. Prognostic value of FDG uptake by the bone marrow in squamous cell carcinoma of the head and neck. Nucl Med Commun 2008;29:431–5.
  • 11. Habib P, Hall N, Zhang J, Sarikaya I, Knopp M. Effects of anemia on bone marrow FDG uptake in PET imaging: Impact on normal tissue SUV. J Nucl Med 2007;48(Supplement 2):62P.
  • 12. Murata Y, Kubota K, Yukihiro M, Ito K, Watanabe H, ShibuyaH. Correlations between 18FFDG uptake by bone marrow and hematological parameters: measurements by PET/CT. Nucl Med and Biol 2006;33:999– 1004.
  • 13. Lee GR, Bithell TC, Foerster J, Athens JW, Lukens JN. Wintrobe’s Clinical Hematology. 9th ed. Philadelphia, PA7 Lea and Febiger; 1983.p. 70.
  • 14. Suga T, Nakamoto Y, Higashi T, Saga T, Hara T, Togashi K. Factors related to FDG uptake observed in the red bone marrow. J Nucl Med 2009;50(Supplement 2):1685P.
  • 15. Kang YH, Lim ST, Jeong YJ, Kim DW, Jeong HJ, Sohn MH. Diffuse hypermetabolism at bone marrow in F-18 FDG PET/CT: Correlation with bone marrow biopsy and complete blood cell counts. Nucl Med Mol Imag 2009;43(1):35-9.
  • 16. Ghosal J, Chakraborty C, Biswas T, Ganguly CK, Datta AG. Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells. Biochem Med Metab Biol 1987;38:134–41.
  • 17. Billat C, Jacquot R. Glucose uptake by rat erythroid cells: the effects of erythropoietin and dexamethasone. Exp Hematol 1992;20:925– 9.
  • 18. Plantade A, Montravers F, Selle F, Izrael V, Talbot JN. Diffusely increased F-18 FDG uptake in bone marrow in a patient with acute anemia and recent erythropoietin therapy. Clin Nucl Med 2003;28:771–2.
  • 19. Blodgett TM, Ames JT, Torok FS, McCook BM, Meltzer CC. Diffuse bone marrow uptake on whole-body F-18 fluorodeoxyglucose positron emission tomography in a patient taking recombinant erythropoietin. Clin Nucl Med 2004;29:161–3.
  • 20. Hamilton JA, Vairo G, Lingelbach SR. CSF-1 stimulates glucose uptake in murine bone marrow-derived macrophages. Biochem Biophys Res Commun 1986;138:445–54.
  • 21. Hamilton JA, Vairo G, Lingelbach SR. Activation and proliferation signals in murine macrophages: stimulation of glucose uptake by hemopoietic growth factors and other agents. J Cell Physiol 1988;134:405–12.
  • 22. Berridge MV, Tan AS. Interleukin-3 facilitates glucose transport in a myeloid cell line by regulating the affinity of the glucose transporter for glucose: involvement of protein phosphorylation in transporter activation. Biochem J 1995;305:843–51.
  • 23. Ahmed N, Berridge MV. Regulation of glucose transport by interleukin-3 in growth factor-dependent and oncogene-transformed bone marrow-derived cell lines. Leuk Res 1997;21:609–18.
  • 24. McCoy KD, Ahmed N, Tan AS, Berridge MV. The hemopoietic growth factor, interleukin-3, promotes glucose transport by increasing the specific activity and maintaining the affinity for glucose of plasma membrane glucose transporters. J Biol Chem 1997;272:17276– 82.
  • 25. Ahmed N, Berridge MV. Distinct regulation of glucose transport by interleukin-3 and oncogenes in a murine bone marrow-derived cell lines. Biochem Pharmacol 1999;57:387– 96.
  • 26. Ogawa M. Differentiation and proliferation of hematopoietic cells. Blood 1993;81:2844–53.
  • 27. Meyer MA, Nathan CA. Reduced F-18 FDG uptake within after external beam radiation. Clin Nucl Med. 2000;25:279-80.
  • 28. Bybel B, Raja S. Vertebral hemangiomas on FDG PET scan. Clin Nucl Med 2003;28:522-3.
  • 29. Hamada K, Myoui A, Ueda T, et al. FDG PET imaging for chronic expanding hematoma in pelvis with massive bone destruction. Skeletal Radiol. 2005;34(12):807-11.
  • 30. Adler LP, Blair HF, Makley JT, et al. Noninvasive grading of musculoskeletal tumors using PET. J Nucl Med 1991;32:1508-12.
  • 31. Okuyama C, Kubota T, Matsushima S, et al. FDG Avid patchy bone marrow misinterpreted as melanoma metastases to bone in a case of aplastic anemia. Clin Nucl Med 2009;34:927- 30.
  • 32. Chin BB, Green ED, Turkington TG, Hawk TC, Coleman RE. Increasing uptake time in FDGPET: standardized uptake values in normal tissues at 1 versus 3 h. Mol Imaging Biol. 2009;11(2):118–22.
  • 33. Fan C, Hernandez-Pampaloni M, Houseni M, et al. Age-related changes in the metabolic activity and distribution of the red marrow as demonstrated by 2-deoxy-2-[F-18]fluoro-Dglucose positron emission tomography. Mol Imaging Biol 2007;9:300–7.
  • 34. Ricci C, Cova M, Kang YS, et al. Normal agerelated patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990;177:83–8.
Turkish Journal of Nuclear Medicine (. Molecular Imaging and Radionuclide Therapy)-Cover
  • ISSN: 1304-1495
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1992
  • Yayıncı: Ortadoğu Reklam Tanıtım Yayıncılık Turizm Eğitim İnşaat Sanayi ve Ticaret A.Ş.
Sayıdaki Diğer Makaleler

Bacak kas kitlesinin belirlenmesinde Tc-99m-sestamibi sintigrafisinin kullanım

FUNDA ÜSTÜN, Gülay ALTUN DURMUŞ, NEŞE TORUN, Ali SARIKAYA

Myokardiyal perfüzyon SPECT görüntülemede dipiridamol stres EKG bulgularının klinik önemi

TUNÇ ÖNEŞ, Sabahat İNANIR, Ahmet TOPRAK, FUAT DEDE, T. Yusuf ERDİL, Feyza ŞEN, H. Turgut TUROĞLU

Tedavi almamış malignite tanılı hastaların PET/BT görüntülemesinde kemik iliği 18-F FDG tutulum ölçümleri ile hematolojik parametreler arasındaki korelasyon

Deniz DİNÇER ALPAN, Süreyya GÖNÜL, Ümit OĞUR, Gani DUMAN, Yasemin DEMİRTAŞ ÖZTÜRK, Eray ALPER

Ollier hastalığında Tc-99m MDP kemik sintigrafisi bulguları

UMUT ELBOĞA, Mustafa YILMAZ, Ebuzer KALENDER, Hüseyin KARAOĞLAN, Hasan Deniz DEMİR, Sabri ZİNCİRKESER, YUSUF ZEKİ ÇELEN

Diffusely increased uptake of Tc-99m MDP in the wrist and hand as a result of intraarterial injection: Original image

Bircan SÖNMEZ, İsmail DOĞAN, Canan YAVRUOĞLU, Zafer ALGAN

Torasik kifoskolyozlu bir situs inversus vakasında myokard perfüzyon sintigrafisi

Güler SİLOV, İsmail ÇİFTÇİ, Eser KAYA

Incidental imaging of gastroesophageal reflux during the F-18 FDG PET/CT scan: Original image

İlknur AK

The role of the experience of Nuclear medicine physician on selection of patients for minimally invasive parathyroidectomy: Institutional experience

Özhan ÖZDOĞAN, Barış AKINCI, Sadet AYHAN, Recep BEKİŞ, Merih Güray DURAK, Abdurtahman ÇÖMLEKÇİ, Mehmet Ali KOÇDOR, Tülay CANDA, Gamze KAYA ÇAPA, Berna DEĞİRMENCİ, Erkan DEREBEK, Hatice DURAK

Tip 2 diabetes mellituslu hastalarda Tc-99m-sestamibi ile perfüzyon rezervi hesaplanarak alt ekstremitede vasküler patolojilerin araştırılması

İhsan Sabri ÖZTÜRK, Oktay SARI, Mehmet YAZICI, BUĞRA KAYA, Mustafa Sabit GÖNEN