Hermitian–Toeplitz determinants for functions with bounded turning

Hermitian–Toeplitz determinants for functions with bounded turning

There is a rich literature on estimation of second and third Hankel determinants for normalised analytic functions in geometric function theory. It is also, therefore, natural to explore the concept of the Hermitian–Toeplitz determinants for such functions. In this paper, the sharp lower and upper estimations for third-order Hermitian-Toeplitz determinant for functions with bounded turning of order α, are obtained.

___

  • [1] Ali RM. Coefficients of the inverse of strongly starlike functions. Bulletin of the Malaysian Mathematical Sciences Society 2003; 26 (1): 63-71.
  • [2] Ali MF, Thomas DK, Vasudevarao A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bulletin of the Australian Mathematical Society 2018; 97: 253-264.
  • [3] Altınkaya Ş, Yalçın S. Upper bound of second Hankel determinant for bi-Bazilevič functions. Mediterranean Journal of Mathematics 2016; 13 (6): 4081-4090.
  • [4] Arif M, Ullah I, Raza M, Zaprawa P. Investigation of the fifth Hankel determinant for a family of functions with bounded turnings. Mathematica Slovaca 2020; 70 (2): 319-328.
  • [5] Bättcher A, Grudsky SM. Infinite Toeplitz matrices. In: Toeplitz matrices, asymptotic linear algebra and functional analysis. Texts and readings in mathematics (2000), Hindustan Book Agency, Gurgaon.
  • [6] Bogoya JM, Böttcher A, Grudsky SM, Maximenko EA. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols. Journal of Mathematical Analysis and Applications 2015; 422(2): 1308-1334.
  • [7] Bouras B. Hankel determinants of a linear combination of three successive Catalan numbers. Mediterranean Journal of Mathematics 2013; 10 (2): 693-705.
  • [8] Chan NN, Kwong MK. Hermitian matrix inequalities and a conjecture, The American Mathematical Monthly 1985; 92 (8): 533-541.
  • [9] Cho NE, Kumar V, Kwon OS, Sim YJ. Coefficient bounds for certain subclasses of starlike functions. Journal of Inequalities and Applications 2019; Paper No. 276: 13 pp.
  • [10] Cho NE, Kumar S., Kumar V. Coefficient functionals for starlike functions associated with the modified sigmoid function and the Bell numbers, Asian-European Journal of Mathematics 2021. doi:10.1142/S1793557122500425.
  • [11] Cho NE, Kumar V, Kwon OS, Sim YJ. Sharp coefficient bounds for certain p−valent functions. Bulletin of the Malaysian Mathematical Sciences Society 2019; 42: 405-416.
  • [12] Cudna K, Kwon OS, Lecko A, Sim YJ, Smiarowska B. The second and third-order Hermitian-Toeplitz determinants for starlike and convex functions of order α. Boletán de la Sociedad Matemática Mexicana 2020; 26 (2): 361-375.
  • [13] Deniz E, Budak L. Second Hankel determinat for certain analytic functions satisfying subordinate condition. Mathematica Slovaca 2018; 68 (2): 463-471.
  • [14] Goodman AW. Univalent functions, vol. I : Mariner, Tampa 1983.
  • [15] Gray RM. Toeplitz and circulant matrices: A Review, Foundations and Trends in Communications and Information Theory 2006; 2 (3): 155–239.
  • [16] Kanas S, Analouei Adegani E, Zireh A. An unified approach to second Hankel determinant of bi-subordinate functions, Mediterranean Journal of Mathematics 2017; 14 (6): 12pp.
  • [17] Hayman WK. On the second Hankel determinant of mean univalent functions. Proceedings of the London Mathematical Society 1968; 18 (3): 77-94.
  • [18] Krishna DV, Ramreddy T. Coefficient inequality for multivalent bounded turning functions of order α. Problemy Analiza-Issues of Analysis 2016; 5 (1): 45-54.
  • [19] Krishna DV, Venkateswarlu B, Ramreddy T. Third Hankel determinant for certain subclass of p−valent functions. Complex Variables and Elliptic Equations 2015; 60 (9): 1301-1307.
  • [20] Kumar V. Hermitian-Toeplitz determinants for certain classes of close-to-convex functions. Bulletin of the Iranian Mathematical Society 2021. doi:10.1007/s41980-021-00564-0.
  • [21] Kumar V, Kumar S. Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions. Boletán de la Sociedad Matemática Mexicana 2021; 27 (55): 16pp. doi:10.1007/s40590-021-00362-y.
  • [22] Kumar V, Srivastava R, Cho NE. Sharp estimation of Hermitian-Toeplitz determinants for Janowski type starlike and convex functions. Miskolc Mathematical Notes 2020; 21 (2): 939-952.
  • [23] Kurt V, Simsek Y. On the Hermitian matrix inequalities. Pure and Applied Mathematika Sciences 1992; 36: 29-32.
  • [24] Lee SK, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. Journal of Inequalities and Applications 2013; 281: 17pp.
  • [25] Libera RJ, Zlotkiewicz EJ. Coefficient bounds for the inverse of a function with derivatives in P . Proceedings of the American Mathematical Society 1983; 87: 251-257.
  • [26] Mustafa N, Mrugusundaramoorthy G, Janani T. Second Hankel determinant for a certain subclass of bi-univalent functions. Mediterranean Journal of Mathematics 2018; 15 (3): 17 pp.
  • [27] Obradović M, Tuneski N. Hermitian-Toeplitz determinants for the class of univalent functions. Armenian Journal of Mathematics 2021, 13 (4): 1-10. doi:10.52737/18291163-2021.13.4-1-10.
  • [28] Pommerenke C. On the coefficients and Hankel determinants of univalent functions. Journal of the London Mathematical Society 1966; 41: 111-122.
  • [29] Trench WF. Some spectral properties of Hermitian Toeplitz matrices. SIAM Journal on Matrix Analysis and Applications 1994; 15 (3): 938-942.
  • [30] Wilkes DM, Morgera SD, Noor F, Hayes MH. A Hermitian Toeplitz matrix is unitarily similar to a real Toeplitzplus- Hankel matrix. IEEE Transactions on Signal Processing 1991; 39(9): 2146-2148.
  • [31] Zaprawa P. Third Hankel determinants for subclasses of univalent functions. Mediterranean Journal of Mathematics 2017; 14 (1): 10pp.