On Lyapunov-type inequalities for (n + 1)st order nonlinear differential equations with the antiperiodic boundary conditions

On Lyapunov-type inequalities for (n + 1)st order nonlinear differential equations with the antiperiodic boundary conditions

In this paper, we establish new Lyapunov-type inequalities for (n + 1) st order nonlinear differential equation including p-relativistic operator and q -prescribed curvature operator under the antiperiodic boundary conditions.

___

  • [1] Aktaş MF, Çakmak D, Tiryaki A. Lyapunov-type inequality for quasilinear systems with anti-periodic boundary conditions. Journal of Mathematical Inequalities 2014; 8 (2): 313-320. doi:10.7153/jmi-08-22
  • [2] Çakmak D. Lyapunov-type integral inequalities for certain higher order differential equations. Applied Mathematics and Computation 2010; 216 (2): 368-373. doi:10.1016/j.amc.2010.01.010
  • [3] Çakmak D. Lyapunov-type inequalities for two classes of nonlinear systems with anti-periodic boundary conditions. Applied Mathematics and Computation 2013; 223: 237-242. doi:10.1016/j.amc.2013.07.099
  • [4] Çakmak D. On Lyapunov-type inequality for a class of quasilinear systems. Electronic Journal of Qualitative Theory of Differential Equations 2014; (9): 1-10. doi:10.14232/ejqtde.2014.1.9
  • [5] Carletti T, Villari G. Existence of limit cycles for some generalization of the Lienard equations: the relativistic and the prescribed curvature cases. Electronic Journal of Qualitative Theory of Differential Equations 2020; (2): 1-15. doi:10.14232/ejqtde.2020.1.2
  • [6] Dosly O, Rehak P. Half-linear Differential Equations. North-Holland Mathematics Studies, 202. Amsterdam: Elsevier Science BV, 2005.
  • [7] Gilbarg D, Trundinger NS. Elliptic Partial Differential Equations of Second Order. Berlin, New York: Spring Verlag, 1983.
  • [8] Jebelean P, Mawhin J, Serban C. Multiple critical orbits to partial periodic perturbations of the p-relativistic operator. Applied Mathematics Letters 2020; (104): 106220. doi:10.1016/j.aml.2020.106220
  • [9] Jebelean P, Mawhin J, Serban C. A vector p-Laplacian type approach to multiple periodic solutions for the p-relativistic operator. Communications in Contemporary Mathematics 2017; 19 (3): 1-16. doi:10.1142/S0219199716500292
  • [10] Jebelean P, Serban C. Boundary value problems for discontinuous perturbations of singular φ-Laplacian operator. Journal of Mathematical Analysis and Applications 2015; 431 (1): 662-681. doi:10.1016/j.jmaa.2015.06.004
  • [11] Kelley WG, Peterson AC. The Theory of Differential Equations. Classical and Qualitative, New York: Springer, 2010.
  • [12] Liapunov AM. Probleme general de la stabilite du mouvement. Annales de la Faculte Des Sciences de Toulouse 1907; 2 (9): 203-407.
  • [13] Wang Y, Cui Y, Li Y. Lyapunov-type inequalities for (m + 1) th order half-linear differential equations with antiperiodic boundary conditions. Electronic Journal of Qualitative Theory of Differential Equations 2015; (14): 1-7. doi:10.14232/ejqtde.2015.1.14
  • [14] Wang Y. Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions. Applied Mathematics Letters 2012; 25 (12): 2375-2380. doi:10.1016/j.aml.2012.07.006
  • [15] Watanabe K, Yamagishi H, Kametaka Y. Riemann zeta function and Lyapunov-type inequalities for certain higher order differential equations. Applied Mathematics and Computation 2011; 218 (7): 3950-3953. doi:10.1016/j.amc.2011.08.105
  • [16] Yang R, Sim I, Lee YH. Lyapunov-type inequalities for one-dimensional Minkowski-curvature problems. Applied Mathematics Letters 2019; 91: 188-193. doi:10.1016/j.aml.2018.11.006