Affine Ricci solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups
Affine Ricci solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups
In this paper, we compute the Bott connection and their curvature on three-dimensional Lorentzian Lie groups with three different distributions, then we classify affine Ricci solitons associated to the Bott connection on the spaces under study.
___
- [1] Alvarez López JA, Tondeur P. Hodge decomposition along the leaves of a Riemannian foliation. Journal of Functional Analysis 1991; 99 (2): 443-458. doi: 10.1016/0022-1236(91)90048-A
- [2] Balogh Z, Tyson J, Vecchi E. Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group. Mathematische Zeitschrift 2017; 287 (1): 1-38. doi: 10.1007/s00209-019-02234-8
- [3] Batat W, Onda K. Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. Journal of Geometry and Physics 2017; 114: 138-152. doi: 10.1016/j.geomphys.2016.11.018
- [4] Baudoin F. Sub-Laplacians and hypoelliptic operators on totally geodesic Riemannian foliations. In Geometry, analysis and dynamics on sub-Riemannian manifolds 2016; 1: 259-321.
- [5] Baudoin F, Grong E. Transverse Weitzenb ¨ock formulas and de Rham cohomology of totally geodesic foliations. Annals of Global Analysis and Geometry 2019; 56 (2): 403-428. doi: 1007/s10455-019-09672-x
- [6] Baudoin F, Grong E, Kuwada K, Thalmaier A. Sub-Laplacian comparison theorems on totally geodesic Riemannian foliations. Calculus of Variations and Partial Differential Equations 2019; 58 (4): 1-38. doi: 10.1007/s00526-019- 1570-8
- [7] Calvaruso G. Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geometriae Dedicata 2007; 127 (1): 99-119. doi: 10.1007/s10711-007-9163-7
- [8] Cordero LA, Parker PE. Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rendiconti Lincei- Matematica e Applicazioni 1997; 17 (1): 129-155.
- [9] Crasmareanu M. A new approach to gradient Ricci solitons and generalizations. Filomat 2018; 32 (9): 3337-3346. doi: 10.2298/FIL1809337C
- [10] Halammanavar N, Devasandra K. Kenmotsu manifolds admitting Schouten-van Kampen connection. Facta Universitatis-Series Mathematics and Informatics 2019; 34: 23-34. doi: 10.22190/FUMI1901023H
- [11] Hamilton RS. The Ricci flow on surfaces. Contemporary Mathematics 1988; 71: 237-262.
- [12] Han Y, De A, Zhao P. On a semi-quasi-Einstein manifold. Journal of Geometry and Physics 2020; 155: 103739. doi: 10.1016/j.geomphys.2020.103739
- [13] Hladky RK. Connections and curvature in sub-Riemannian geometry. Houston Journal of Mathematics 2012; 38 (4): 1107-1134. doi: 10.1186/1687-1812-2012-230
- [14] Hui S, Prasad R, Chakraborty D. Ricci solitons on Kenmotsu manifolds with respect to quarter symmetric nonmetric φ-connection. Ganita 2017; 67: 195-204.
- [15] Perktas SY, Yildiz A. On quasi-Sasakian 3-manifolds with respect to the Schouten-van Kampen connection. International Electronic Journal of Geometry 2020; 13 (2): 62-74. doi: 10.36890/iejg.742073
- [16] Siddiqui AN, Chen BY, Bahadir O. Statistical solitons and inequalities for statistical warped product submanifolds. Mathematics 2019; 7 (9): 797. doi: 10.3390/math7090797
- [17] Wang Y. Curvature of multiply warped products with an affine connection. Bulletin of the Korean Mathematical Society 2013; 50 (5): 1567-1586. doi: 10.4134/BKMS.2013.50.5.1567
- [18] Wang Y. Affine Ricci solitons of three-dimensional Lorentzian Lie groups. Journal of Nonlinear Mathematical Physics 2021; 28 (3): 277-291. doi: 10.2991/jnmp.k.210203.001
- [19] Wang Y, Wei S. Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane. Science China Mathematics 2021; 64 (8): 1843-1860. doi: 10.1007/s11425-019-1667-5