Cameron–Storvick theorem associated with Gaussian paths on function space

Cameron–Storvick theorem associated with Gaussian paths on function space

The purpose of this paper is to provide a more general Cameron–Storvick theorem for the generalized analytic Feynman integral associated with Gaussian process Zk on a very general Wiener space Ca,b[0, T] . The general Wiener space Ca,b[0, T] can be considered as the set of all continuous sample paths of the generalized Brownian motion process determined by continuous functions a(t) and b(t) on [0, T] . As an interesting application, we apply this theorem to evaluate the generalized analytic Feynman integral of certain monomials in terms of Paley–Wiener–Zygmund stochastic integrals.

___

  • [1] Cameron RH. The first variation of an indefinite Wiener integral. Proceedings of the American Mathematical Society 1951; 2: 914–924.
  • [2] Cameron RH, Storvick DA. Feynman integral of variations of functionals, in: Gaussian Random Fields (eds. Itô K, Hida T., 1990), Series on Probability and Statistics, Vol. 1, pp. 144–157, Singapore: World Scientific, 1991.
  • [3] Chang SJ, Choi JG. Classes of Fourier–Feynman transforms on Wiener space. Journal of Mathematical Analysis and Applications 2017; 449: 979–993.
  • [4] Chang SJ, Choi JG. Translation theorem for function space integral associated with Gaussian paths and applications. Bulletin of the Iranian Mathematical Society 2019; 45: 1367–1387.
  • [5] Chang SJ, Choi JG, Ko AY. Multiple generalized analytic Fourier–Feynman transform via rotation of Gaussian paths on function space. Banach Journal of Mathematical Analysis 2015; 9: 58–80.
  • [6] Chang SJ, Choi JG, Skoug D. Integration by parts formulas involving generalized Fourier-Feynman transforms on function space. Transactions of the American Mathematical Society 2003; 355: 2925–2948.
  • [7] Chang SJ, Choi JG, Skoug D. Rotation of Gaussian processes on function space. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas 2019; 113: 2295–2308.
  • 8] Chang SJ, Skoug D. Generalized Fourier–Feynman transforms and a first variation on function space. Integral Transforms and Special Functions 2003; 14: 375–393.
  • [9] Chung DM, Lee JH, Generalized Brownian motions with application to finance. Journal of the Korean Mathematical Society 2006; 43: 357–371.
  • [10] Chung TS, Ji UC, Gaussian white noise and applications to finance, in: Quantum Information and Complexity (Hida T. Saitô K. Si S. Eds.), Proceedings of the Meijo Winter School 2003, Meijo University, Nagoya, Japan, 6 – 10 January 2003, pp.179–201, Singapore: World Scientific, 2004.
  • [11] Chung DM, Park C, Skoug D. Generalized Feynman integrals via conditional Feynman integrals. Michigan Mathematical Journal 1993; 40; 377–391.
  • [12] Folland GB. Real Analysis: Modern Techniques and Their Applications (Second edition). Hoboken, New Jersey, NJ, USA: Wiley and Sons, 1999.
  • [13] Kuo HH. Introduction to Stochastic Integration. Universitext, New York, NY, USA: Springer Science+Business Media Incorporated, 2006.
  • [14] Lee JH. The linear space of generalized Brownian motions with applications. Proceedings of the American Mathematical Society 2005; 133: 2147–2155.
  • [15] Paley, REAC, Wiener N, Zygmund A. Notes on random functions. Mathematische Zeitschrift 1933; 37: 647–668.
  • [16] Park C, Skoug D. A note on Paley–Wiener–Zygmund stochastic integrals. Proceedings of the American Mathematical Society 1988: 103; 591–601.
  • [17] Park C, Skoug D. Integration by parts formulas involving analytic Feynman integrals. PanAmerican Mathematical Journal 1998; 8: 1–11.
  • [18] Park C, Skoug D. A Kac–Feynman integral equation for conditional Wiener integrals. Journal of Integral Equations and Applications 1991; 3: 411–427.
  • [19] Park C, Skoug D. Generalized Feynman integrals: The L(L2,L2) theory. Rocky Mountain Journal of Mathematics 1995; 25: 739–756.
  • [20] Park C, Skoug D, Storvick D. Fourier–Feynman transforms and the first variation. Rendiconti del Circolo Matematico di Palermo, Second Series 1998: 47: 277–292.
  • [21] Yeh J. Singularity of Gaussian measures on function spaces induced by Brownian motion processes with nonstationary increments. llinois Journal of Mathematics 1971; 15: 37–46.
  • [22] Yeh J. Stochastic Processes and the Wiener Integral. New York, NY, USA: Marcel Dekker Incorporated, 1973.