Finite groups with three nonabelian subgroups

Finite groups with three nonabelian subgroups

We characterize finite groups with exactly two nonabelian proper subgroups. When G is nilpotent, we show that G is either the direct product of a minimal nonabelian p-group and a cyclic q -group or a 2-group. When G is nonnilpotent supersolvable group, we obtain the presentation of G. Finally, when G is nonsupersolvable, we show that G is a semidirect product of a p-group and a cyclic group.

___

  • [1] Baer R. Supersoluble immersion. Canadian Journal of Mathematics 1959; 11: 353-369. doi:10.4153/CJM-1959-036-2
  • [2] Ballester-Bolinches A and Esteban-Romero R. On minimal non-supersoluble group. Revista matemática Iberoamericana 2007; 23 (1): 127-142.
  • [3] Berkovich Y. Groups of prime power order. Vol. 2 Walter de Gruyter de Gruyter, 2008.
  • [4] Berkovich Y. On abelian subgroups of p-groups. Jornal of Algebra 1998; 199: 262-280.
  • [5] Doerk K, Hawkes T. Finite soluble groups. Berlin: de Gruyter Expositions in Mathematics, 4 (Walter de Gruyter & Co., Berlin), 1992.
  • [6] Fouladi S. Pairwise non-commuting elements in finite metacyclic 2-groups and some finite p-groups. Bulletin of Iranian Mathematical Society 2014; 40 (6): 1573-1585. doi:10.1007/s41980-020-00473-8
  • [7] Fouladi S, Orfi R. The automorphism group of a finite minimal non-abelian p-group. Mathematical Reports 2014; 16 (1): 133-139. doi:10.1142/S0219498813501508
  • [8] Itô N. Note on (LM)-groups of finite order. Technical report, Kodai Mathematical Seminar Reports 1951.
  • [9] Meng W. Finite Groups with Few Non-Abelian Subgroups. Communications in Algebra 2015; 43: 909-915. doi:10.1080/00927872.2013.851208
  • [10] Miller GA, Moreno HC. Non-abelian groups in which every subgroup is abelian. Transactions of the American Mathematical Society 1903; 4 (4): 398-404.
  • [11] Rédei L, Das “Schiefe Produkt“ in der Gruppentheorie. Commentarii Mathematici Helvetici 1947; 20: 225–264.
  • [12] Rédei L. Die endlichen einstufig nichtnilpotenten Gruppen. Publicationes Mathematicae Debrecen 1956; 4: 303-324.
  • [13] Robinson DJS. A course in the theory of groups, 2nd ed., New York: Springer-Verlag, 1996.
  • [14] Rose JS. The influence on a finite group of its proper abnormal structure. Journal of the London Mathematical Society 1965; 40: 348-361. doi:10.1112/JLMS/S1-40.1.348
  • [15] Russo FG. Minimal non-nilpotent groups which are supersolvable. JP Journal of Algebra, Number Theory and Applications 2010; 18: 79-88.
  • [16] Schmidt OYu. Groups whose all subgroups are special. Matematicheskii Sbornik 1924; 31: 366-372.
  • [17] Shi JT, Zhang C. Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable. Acta Mathematica Sinica (English Series) 2011; 27 (5): 891-896. doi:10.1007/s10114-011-9476-1
  • [18] Taeri B, Tayanloo-Beyg F. Finite groups with a unique non-abelian proper subgroup. Journal of Algebra and its Applications 2019; 18 (11): 1950210. doi: 10.1142/S0219498819502104
  • [19] Taeri B, Tayanloo-Beyg F. Characterization of finite groups with a unique non-nilpotent proper subgroup. International Journal of Group Theory 2021; 10 (1): 47-53. doi: 10.22108/ijgt.2019.116209.1543
  • [20] Zarrin M. A generalization of Schmidt’s Theorem on groups with all subgroups nilpotent. Archiv der Mathematik 2012; 99: 201-206. doi:10.1007/s00013-012-0411-1
  • [21] Zarrin M. On solvability of groups with a few non-cyclic subgroups. Algebra Colloquium 2016; 23 (1): 105-110. doi:10.1142/S1005386716000134