Synthesis of $Ni/Al_2 O3$ catalysts via alkaline polyol method and hydrazine reduction method for the partial oxidation of methane

Synthesis of $Ni/Al_2 O3$ catalysts via alkaline polyol method and hydrazine reduction method for the partial oxidation of methane

Nickel catalysts supported on $γ-Al_2 O_3$ were synthesized in the presence of polyvinylpyrrolidone (PVP) using both alkaline polyol method and hydrazine reduction method while fixing the weight ratio of $[(PVP)]/[Ni(CH_3 COO)_2 ·4H_2 O]$ at 2. The effects of hydrazine $[N_2 H_5$ OH]/[Ni] and [NaOH]/[Ni] molar ratios on the structural properties of the catalysts were characterized by transmission electron microscopy (HRTEM) and by X-ray diffraction (XRD). The average of monodispersed Ni nanoparticles ranged between 8.0 and 13.0 nm. The catalytic tests were performed for the partial oxidation of methane in the temperature range of 600–800 °C under a flow rate of 157,500 L $kg^{–1}$ hr–1 with $CH_4 /O_2$ = 2. At the molar ratio of [NaOH]/[Ni] = 2, the resultant nickel nanoparticles on alumina was established completely without impurities; thus, it demonstrated the highest catalytic activity, 88% for $CH_4$ conversion, and H2 selectivity, 90.60%. The optimum $[N_2 H_5 OH]/[Ni]$ ratio was determined as 4.1, which means a good catalytic performance and 89.35% selectivity to H2 for the partial oxidation of methane.

___

  • 1. Koh ACW, Chen L, Leong WK, Johnson B, Khimyak T et al. Hydrogen or syngas production via the partial oxidation of methane over supported nickel-cobalt catalysts. International Journal of Hydrogen Energy 2007; 32: 725-730. doi: 10.1016/j.ijhydene.20 06.08.002
  • 2. De Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P. Methane partial oxidation on NiCu-based catalysts. Catalysis Today 2009; 145: 176-185. doi: 10.1016/j.cattod.2008.04.019
  • 3. Corbo P, Migliardini F. Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts. International Journal of Hydrogen Energy 2007; 32: 55-66. doi: 10.1016/j.ijhydene.2006.06.032
  • 4. Requies J, Barrio VL, Cambra JF, Guemez MB, Arias PL et al. Effect of redox additives over $Ni/Al_2O_3$ catalysts on syngas production. Fuel 2008; 87: 3223-3231. doi: 10.1016/j.fuel.2008.05.004
  • 5. Ma Y, Xu Y, Demura M, Chun DH, Xie G et al. Catalytic activity of atomized $Ni_3$ Al powder for hydrogen generation by methane steam reforming. Catalysis Letters 2006; 112: 31-36. doi: 10.1007/s10562-006-0160-5
  • 6. York APE, Xiao TC, Green MLH. Brief overview of the partial oxidation of methane to synthesis gas. Topics in Catalysis 2003; 22: 345-358. doi: 10.1023/A:1023552709642
  • 7. Alvarez-Galvan C, Falcon H, Cascos V, Troncoso L, Perez-Ferreras S at al. Cermets $Ni/(Ce_{0.9}_Ln{0.1}O_{1.95})$ (Ln=Gd, La, Nd and Sm) prepared by solution combustion method as catalysts for hydrogen production by partial oxidation of methane, International Journal of Hydrogen Energy 2018; 43: 16834-16845. doi: 10.1016/j.ijhydene.2018.04.025
  • 8. Hu YH, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and $CO_2$ reforming. Advances in Catalysis 2004; 48: 297-345. doi: 10.1016/S0360-0564(04)48004-3
  • 9. Ji YY, Li WZ, Xu HY, Chen YX. Catalytic partial oxidation of methane to synthesis gas over $Ni/γ-Al_2O_3$ catalyst in a fluidizedbed. Applied Catalysis A: General 2001; 213(1): 25–31. doi: 10.1016/S0926-860X(00)00887-5
  • 10. Xu S, Zhao R, Wang XL. Highly coking resistant and stable $Ni/Al_2O_3$ catalysts prepared by W/O microemulsion for partial oxidation of methane. Fuel Processing Technology 2004; 86 (2): 123-133. doi: 10.1016/j.fuproc.2003.12.013
  • 11. Yu C, Weng W, Shu Q, Meng X, Zhang B. et al. Additive effects of alkaline-earth metals and nickel on the performance of $Co/γ-Al_2O_3$ in methane catalytic partial oxidation. Journal of Natural Gas Chemistry 2011; 20: 135-139. doi: 10.1016/S1003-9953(10)60175-2
  • 12. Yu C, Hu J, Weng W, Zhou X, Chen X. Preparation of $Co/Ce_{0.5}Z_{r0}.5O_2$ catalysts and their catalytic performance in methane partial oxidation to produce synthesis gas. Journal of Fuel Chemistry and Technology 2012, 40 (4): 418-423. doi: 10.1016/S1872-5813(12) 60019-X
  • 13. Slagtern Å, Swaan HM, Olsbye U, Dahl IM, Mirodatos C. Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts. Catalysis Today 1998; 46: 107-115. doi: 10.1016/S0920-5861(98)00332-0
  • 14. Moral A, Reyero I, Llorca J, Bimbela F, Gandía LM Partial oxidation of methane to syngas using Co/Mg and Co/Mg-Al oxide supported catalysts. Catalysis Today 2019; 333: 259-267. doi: 10.1016/j.cattod.2018.04.003
  • 15. He S, Wu H, Yu W, Mo L, Lou H, et al. Combination of CO2 reforming and partial oxidation of methane to produce syngas over Ni/SiO2and $Ni–Al_2O_3/SiO_2$ catalysts with different precursors. International Journal of Hydrogen Energy 2009; 34(2): 839-843. doi: 10.1016/j. ijhydene.2008.10.072
  • 16. Khajenoori M, Rezaei M, Meshkani F. Dry reforming over $CeO_2$-promoted Ni/MgO nano-catalyst: Effect of Ni loading and $CH_4/CO_2$ molar ratio. Journal of Industrial and Engineering Chemistry 2015; 21: 717-722. doi: 10.1016/j.jiec.2014.03.043
  • 17. Vella LD, Specchia S. Alumina-supported nickel catalysts for catalytic partial oxidation of methane in short-contact time reactors. Catalysis Today 2011; 176: 340-346. doi: 10.1016/j.cattod.2010.11.068
  • 18. Choudhary VR, Rajput AM, Rane VH. Low temperature oxidative conversion of methane to synthesis gas over Co/rare earth oxide catalysts. Catalysis Letters 1992; 16: 269-272. doi: 10.1007/BF00764339
  • 19. Choudhary VR, Sansare SD, Mamman AS. Low-temperature selective oxidation of methane to carbon monoxide and hydrogen over cobalt-MgO catalysts. Applied Catalysis A: General 1992; 90: L1-L5. doi: 10.1016/0926-860X(92)80242-5
  • 20. Sabori R, Sharifnia S, Aalami-Aleagha ME, Panahi MR. Promotion of metallic catalysts by metal oxide powders in partial oxidation of methane. Journal of the Taiwan Institute of Chemical Engineers 2012; 43: 153-158. doi: 10.1016/j.jtice.2011.07.007
  • 21. Ozdemir H, Oksuzomer MAF, Gurkaynak MA. Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on $H_2/CO$ ratio and carbon deposition. International Journal of Hydrogen Energy 2010; 35:12147-12160. doi:10.1016/j.ijhydene.2010.08.091
  • 22. Ozdemir H, Oksuzomer MAF. Synthesis of $Al_2O_3$, MgO and $MgAl_2O_4$ by solution combustion method and investigation of performances in partial oxidation of methane. Powder Technology 2020; 359: 107-117. doi: 10.1016/j.powtec.2019.10.001
  • 23. Bu X, Ying Y, Zhang C, Peng W. Research improvement in Zn-based sorbent for hot gas desulfurization. Powder Technology 2008; 180 (1–2): 253. doi: 10.1016/j.powtec .20 07.03.039
  • 24. Xu S, Zhao R, Wang X. Highly coking resistant and stable $Ni/Al_2O_3$ catalysts prepared by W/O microemulsion for partial oxidation of methane. Fuel Processing Technology 2004; 86: 123-133. doi: 10.1016/j.fuproc.2003.12.013
  • 25. Rostrup-Nielsen JR. Catalytic Steam Reforming. In: Anderson JR, Boudart M (editors). Catalysis, science and technology. Berlin: Springer, 1989, pp 1-117.
  • 26. Pramanik P. A novel chemical route for the preparation of nanosized oxides, phosphates, vanadates, molybdates and tungstates using polymer precursors. Bulletin of Materials Science 1999; 22 335-339. doi: 10.1007/BF02749940
  • 27. Nik Roselina NR, Azizan A. Ni nanoparticles: Study of particles formation and agglomeration. Procedia Engineering 2012; 41: 1620-1626. doi: 10.1016/j.proeng.2012 .07.359
  • 28. Li YD, Li CW, Wang HR, Li LQ, Qian YT. Preparation of nickel ultrafine powder and crystalline film by chemical control reduction. Materials Chemistry and Physics 1999; 59: 88-90. doi: 10.1016/S0254-0584(99)00015-2
  • 29. Li YD, Li LQ, Liao HW, Wang HR. Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction. Journal of Materials Chemistry A 1999; 9: 2675-2677. doi: 10.1039/A904686K
  • 30. Zach MP, Penner RM. Nanocrystalline Nickel Nanoparticles. Advanced Materials 2000; 12 (12): 878-883. doi: 10.1002/1521-4095(200006)12:12<878::AID-ADMA878>3.0.CO;2-X
  • 31. Zheng, H, Liang, J, Zeng, J, Qian, Y. 2001. Preparation of nickel nanopowders in ethanol-water system (EWS). Materials Research Bulletin 2001; 36; 947-952. doi: 10.1016/S0025-5408(01)00569-4
  • 32. Devarajan S, Bera P, Sampath S. Bimetallic nanoparticles: A single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. Journal of Colloid and Interface Science 2005; 290: 117-129. doi: 10.1016/j.jcis.2005.04.034
  • 33. Grisaru H, Palchik O, Gedanken A. Microwave-Assisted Polyol Synthesis of $CuInTe_2$ and CuInSe2 Nanoparticles. Inorganic Chemistry 2003; 42: 7148-7155. doi: 10.1021/ic0342853
  • 34. Hedge MS, Larcher D, Dupont L, Beaudoin B, Tekaia- Elhsissen K et al. Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders. Solid State Ionics 1996; 93: 33-50. doi: 10.1016/S0167-2738(96)00516-4
  • 35. Couto GG, Klein JJ, Schreiner WH, Mosca DH, Oliveira AJA et al. Ni nanoparticles obtained by a modified polyol process: Synthesis, characterization and magnetic properties. Journal of Colloid and Interface Science 2007; 311: 461-468. doi: 10.1016/j.jcis.2007.03.045
  • 36. Wang H, Kou X, Zhang J, Li J. Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Bulletin of Materials Science 2008; 31: 97-100. doi: 10.1007/s12034-008-0017-1
  • 37. Gurkaynak Altincekic T, Boz I. Influence of synthesis conditions on particle morphology of nanosized Cu/ZnO powder by polyol method. Bulletin of Materials Science 2008; 31: 619-624. doi: 10.1007/s12034-008-0098-x
  • 38. Fiévet F, Lagier JP, Figlarz M. Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process. MRS Bulletin 1989; 14: 29-34. doi: 10.1557/S0883769400060930
  • 39. Seshadri R, Rao CNR. Preparation of monodispersed, submicron gold particles. Materials Research Bulletin 1994; 29: 795-799. doi:10.1016/0025-5408(94)90205-4
  • 40. Kurihara LK, Chow GM, Schoen PE. Nanocrystalline metallic powders and films produced by the polyol method. Nanostructured Materials 2008; 5: 607-613. doi: 10.1016/0965-9773(95)00275-J
  • 41. Bayrakdar E, Gurkaynak Altincekic T, Oksuzomer MAF. Effects of PVP on the preparation of nanosized $Al_2O_3$ supported Ni catalysts by polyol method for catalytic partial oxidation of methane. Fuel Processing Technology 2013; 110: 167-175. doi: 10.1016/j.fuproc. 2012.12.009
  • 42. Mohamed MA, El-Maghraby AH, El-Latif MMA, Farag HA. Optimum synthesis conditions of nanometric Fe50Ni50 alloy formed by chemical reduction in aqueous solution. Bulletin of Materials Science 2013; 36: 845-852. doi: 10.1007/s12034-013-0539-z
  • 43. Gao J, Guan F, Zhao Y, Yang W, Ma Y et al. Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity. Materials Chemistry and Physics 2001; 71: 215-219. doi: 10.1016/S0254-0584(01)00275-9
  • 44. Chen DH, Wu SH. Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials 2000; 12: 1354-1360. doi: 10.1021/cm991167y
  • 45. Bai L, Fan J, Cao Y, Yuan F, Zuo A, Tang Q. Shape-controlled synthesis of Ni particles via polyol reduction. Journal of Crystal Growth 2009; 311: 2474-2479. doi: 10.1016/j.jcrysgro.2009.02.009
  • 46. Carroll KJ, Ulises Reveles J, Shultz MD, Khanna SN, Carpenter EE. Preparation of Elemental Cu and Ni Nanoparticles by the Polyol Method: An Experimental and Theoretical Approach. Journal of Physical Chemistry C 2011; 115 (6): 2656-2664. doi: 10.1021/jp1104196
  • 47. Ung D, Soumare Y, Chakroune N, Viau G, Vaulay M-J et al. Growth of Magnetic Nanowires and Nanodumbbells in Liquid Polyol. Chemistry of Materials 2007; 19 (8): 2084–2094. doi: 10.1021/cm0627387
  • 48. Cheng JL, Hng HH, Ng HY, Soon PC, Lee YW. Synthesis of Sub-Micron Nickel Particles Coated onto Aluminum Powdersvia a Modified Polyol Process. Metals and Materials International 2008; 14: 583-587. doi: 10.3365/met.mat.2008.10.583
  • 49. Kim HW, Kang KM, and Kwak HY. Preparation of supported Ni catalysts with a core/shell structure and their catalytic tests of partial oxidation of methane. International Journal of Hydrogen Energy 2009; 34: 3351-3359. doi:10.1016/j.ijhydene.2009.02.036
  • 50. Lu CY, Tseng HH, Wey MY, Liu LY, Chuang KH. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over $Cu-Co/Al_2O_3$ prepared using the polyol process. Materials Science and Engineering: B 2009; 157:105-112. doi:10.1016/j.mseb.2009.01.005
  • 51. Lu CY, Wey MY, Chen LI. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation. Applied Catalysis A: General 2007; 325: 163-174. doi: 10.1016/j.apcata.2007.03.030
  • 52. Wu SZ, Chen DH. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Journal of Colloid and Interface Science 2003; 259: 282-286. doi: 10.1016/S0021-9797(02)00135-2
  • 53. Zhang J, Xu H, Jin X, Ge Q, Li W. Characterizations and activities of the nano-sized $Ni/Al_2O_3$ and $Ni/La–Al_2O_3$ catalysts for$NH_3$ decomposition. Applied Catalysis A: General Volume 2005; 290(1–2): 87-96. doi: 10.1016/j.apcata.2005.05.020
  • 54. Neiva EGC, Bergamini MF, Oliveira MM, Marcolino JrLH, Zarbin AJG. PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sensors and Actuators B: Chemical 2014; 196: 574-581. doi: 10.1016/j.snb.2014.02.041
  • 55. Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Nanonickel Particles Supported on Silica. Morphology Effects on Their Surface and Hydrogenating Properties. Catalysis Letters 2004; 97: 177-183. doi: 10.1023/B:CATL.0000038581.80872.7b
  • 56. Enger BC, Lødeng R, Holmen A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Applied Catalysis A: General; 346: 1-27. doi: 10.1016/j.apcata.2008.05.018
  • 57. Jalowiecki L, Wrobel G, Daage M, Bonnelle JP. Structure of catalytic sites on hydrogen-treated copper-containing spinel catalysts. Journal of Catalysis 1987, 107(2): 375-392. doi: 10.1016/0021-9517(87)90303-4
  • 58. Franquin D, Monteverdi S, Molina S, Bettahar MM, Fort Y. Colloidal nanometric particles of nickel deposited on γ-alumina: characteristics and catalytic properties. Journal of Materials Science 1999; 34: 4481-4488. doi: 10.1023/A:1004637221636
  • 59. Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. Journal of Catalysis 2004; 221 (2): 325-334. doi: 10.1016/j.jcat.2003. 08.002
  • 60. Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Study of support effects on the reduction of Ni2+ ions in aqueous hydrazine. Langmuir 2004; 20 (1): 208-213. doi: 10.10 21/la035120+
  • 61. Pantaleo G, La Parola V, Deganello F, Singha RK, Bal R, Veneziaa AM. Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects. Applied Catalysis B: Environmental 2016; 189: 233-241. doi:10.1016/j.apcatb.2016.02 .064
  • 62. Santana Santos M, Crisóstomo Rabelo Neto R, Noronha FB, Bargiela P, Graça Carneiro da Rocha M, Resini C, CarbóArgibay E, Fréty R, Teixeira Brandão S. Perovskite as catalyst precursors in the partial oxidation of methane: The effect of cobalt, nickel and pretreatment. Catalysis Today 2018; 299: 229-241. doi:10.1016/j.catt od.2017.06.027
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Sensitive and selective determination of imidacloprid with magnetic molecularly imprinted polymer by using LC/Q-TOF/MS

Raif İLKTAÇ, Zinar Pınar GÜMÜŞ

Preconcentration of rifampicin prior to its efficient spectroscopic determination in the wastewater samples based on a nonionic surfactant

Haji MUHAMMAD, Bushra ISMAIL, Afaq Ullah KHAN, Faheem SHAH, Rafaqat Ali KHAN, Asad Mohammad KHAN

Synthesis of $Ni/Al_2 O3$ catalysts via alkaline polyol method and hydrazine reduction method for the partial oxidation of methane

Tuba GÜRKAYNAK ALTINÇEKİÇ, Mehmet Ali Faruk ÖKSÜZÖMER, Ezgi BAYRAKDAR ATEŞ

Adsorptive performance of MWCNTs for simultaneous cationic and anionic dyes removal; kinetics, thermodynamics, and isotherm study

Abdul ZAHIR, Adnan AKHTAR, Zaheer ASLAM, Irfan YOUSAF

Supercritical carbon dioxide extraction of Usnea longissima (L.) Ach.: Optimization by Box-Behnken design (BBD)

Ceren ATİLA DİNÇER, Nuray YILDIZ, Ceren GÖKALP, Bengü GETİREN, Atila YILDIZ

Synthesis and characterization of benzodioxinone mono-telechelics and their use in block copolymerization

Cumali ÇELİK

Theoretical investigation on the addition reaction of the germylenoid $H_2$ GeLiCl with acetone

Bingfei YAN, Wenzuo LI, Xiaolin ZHANG

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK

Preparation and characterization of templated porous carbons from sucrose by one-pot method and application as a $CO_2$ adsorbent

Meltem GÜRBÜZ, Fatma TÜMSEK