Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

A series of $Zr(SO_4)_2/SiO_2$ solid acid catalysts with different $Zr(SO_4 )_2$ loadings were prepared by water-soluble-impregnation method at room temperature. Then, the prepared catalysts were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectrum, X-ray diffraction, adsorption/desorption of $N_2$ , and temperatureprogrammed desorption of $NH_3$ . The results showed that the active component $Zr(SO_4 )_2$ was successfully adhered to the mesoporous $SiO_2$ , and the acid amount of $Zr(SO_4)_2/SiO_2$ increased with the increasing of the $Zr(SO_4 )_2$ loadings. Finally, the wheat stalk was used as raw material and depolymerized over $Zr(SO_4)_2/SiO_2$ to produce ethyl levulinate (EL). The reaction mixture was separated and purified by filtration and vacuum distillation. The kinetic characteristics and the reaction pathway were also studied. A comparative study showed that 20 wt.% $Zr(SO_4)_2/SiO_2$ exhibited higher catalytic activity. When reaction temperature, time, catalyst dosage and Zr(SO4 )2 loadings were 190 °C, 50 min, 20 wt.% and 30 wt.%, the EL yield reached a maximum of 17.14%. The relative content of EL exceeded 90% after three steps of distillation.

___

  • 1. Xu XL, Zhang XL, Zou WJ, Yue HJ, Tian G et al. Conversion of carbohydrates to methyl levulinate catalyzed by sulfated montmorillonite. Catalysis Communications 2015; 62: 67-70. doi: 10.1016/j.catcom.2015.01.011
  • 2. Zhao SQ, Xu GZ, Chang C, Fang SQ, Liu Z et al. Direct conversion of carbohydrates into ethyl levulinate with potassium phosphotungstate as an efficient catalyst. Catalysts 2015; 5 (4): 1897-1910.doi: 10.3390/catal5041897
  • 3. Saravanamurugan S, Riisager A. Zeolite catalyzed transformation of carbohydrates to alkyl levulinates. ChemCatChem 2013; 5 (7): 1754- 1757. doi: 10.1002/cctc.201300006
  • 4. Tan ZF, Chen KT, Liu PK, Possibilities and challenges of China's forestry biomass resource utilization. Renewable and Sustainable Energy Reviews 2015; 41: 368-378. doi: 10.1016/j.rser.2014.08.059
  • 5. Climent MJ, Corma A, Iborra S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry 2014; 16 (2): 516-547. doi: 10.1039/C3GC41492B
  • 6. Loow YL, Wu TY, Tan KA, Lim YS, Siow LF et al. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars. Journal of Agricultural and Food Chemistry 2015; 63 (38): 8349-8363. doi: 10.1021/acs. jafc.5b01813
  • 7. Tan TW, Shang F, Zhang X. Current development of biorefinery in China. Biotechnology Advances 2010; 28 (5): 543-555. doi: 10.1016/j. biotechadv.2010.05.004
  • 8. Lal R. World crop residues production and implications of its use as a biofuel. Environment International 2005; 31 (4): 575-584. doi: 10.1016/j.envint.2004.09.005
  • 9. Zeng XY, Ma YT, Ma LR. Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews 2007; 11 (5): 976- 987. doi: 10.1016/j.rser.2005.10.003
  • 10. Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi G et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews 2013; 27: 77-93. doi: 10.1016/j.rser.2013.06.033
  • 11. Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: an overview. Energy & Environmental Science 2011; 4 (10): 3913-3929. doi: 10.1039/C0EE00667J
  • 12. Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources Conservation and Recycling 2007; 50 (1): 1-39. doi: 10.1016/j.resconrec.2006.05.007
  • 13. Chang C, Xu GZ, Zhu WN, Bai J, Fang SQ. One-pot production of a liquid biofuel candidate—ethyl levulinate from glucose and furfural residues using a combination of extremely low sulfuric acid and zeolite USY. Fuel 2015; 140: 365-370. doi: 10.1016/j.fuel.2014.09.102
  • 14. Zhang XY, Li Y, Xue LF, Wang ST, Wang XH et al. Catalyzing cascade production of methyl levulinate from polysaccharides using heteropoly acids $H_nPW_{11}MO_{39}$ with Brønsted/Lewis acidic sites. ACS Sustainable Chemistry & Engineering 2018; 6 (1): 165-176. doi: 10.1021/acssuschemeng.7b02042
  • 15. Morales G, Osatiashtiani A, Hernandez B, Iglesias J, Melero JA et al. Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chemical Communications 2014; 50 (79): 11742-11745. doi: 10.1039/C4CC04594G
  • 16. Demolis A, Essayem N, Rataboul F. Synthesis and applications of alkyl levulinates. ACS Sustainable Chemistry & Engineering 2014; 2 (6): 1338-1352. doi: 10.1021/sc500082n
  • 17. Khusnutdinov RI, Baiguzina AR, Smirnov AA, Mukminov RR, Whemilev UM. Furfuryl alcohol in synthesis of levulinic acid esters and difurylmethane with Fe and Rh complexes. Russian Journal of Applied Chemistry 2007; 80 (10): 1687-1690. doi: 10.1134/ S1070427207100163
  • 18. Joshi H, Moser BR, Toler J, Smith WF, Walker T. Ethyl levulinate: a potential bio-based diluent for biodiesel which improves cold flow properties. Biomass & Bioenergy 2011; 35 (7): 3262-3266. doi: 10.1016/j.biombioe.2011.04.020
  • 19. Windom BC, Lovestead TM, Mascal M, Nikitin EB, Bruno TJ. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy & Fuels 2011; 25 (4): 1878-1890. doi: 10.1021/ef200239x
  • 20. Fiorentino G, Ripa M, Mellino S, Fahd S, Ulgiati S. Life cycle assessment of Brassica carinata biomass conversion to bioenergy and platform chemicals. Journal of Cleaner Production 2014; 66: 174-187. doi: 10.1016/j.jclepro.2013.11.043
  • 21. Mascal M, Nikitin EB. Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem 2010; 3: 1349-1351. doi:10.1002/cssc.201000326
  • 22. Mao RLV, Zhao Q, Dima G, Petraccone D. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catalysis Letters 2011; 141 (2): 271-276. doi: 10.1007/ s10562-010-0493-y
  • 23. Lange JP, Van de Graaf WD, Haan RJ. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem 2009; 2 (5): 437-441. doi: 10.1002/cssc.200800216
  • 24. Moradi GR, Yaripour F, Vale-Sheyda P. Catalytic dehydration of methanol to dimethyl ether over mordenite catalysts. Fuel Processing Technology 2010; 91 (5): 461-468. doi: 10.1016/j.fuproc.2009.12.005
  • 25. Busca G. Acid catalysts in industrial hydrocarbon chemistry. Chemical Reviews 2007; 107 (11): 5366-5410. doi: 10.1021/cr068042e
  • 26. Tyagi B, Mishra MK, Jasra RV. Synthesis of 7-substituted 4-methyl coumarins by Pechmann reaction using nano-crystalline sulfatedzirconia. Journal of Molecular Catalysis A: Chemical 2007; 276 (1-2): 47-56. doi: 10.1016/j.molcata.2007.06.003
  • 27. Yu GX, Zhou XL, Li CL, Chen LF, Wang JA. Esterification over rare earth oxide and alumina promoted $SO_4 ^{2−}/ZrO_2$. Catalysis Today 2009; 148 (1-2): 169-173. doi: 10.1016/j.cattod.2009.03.006
  • 28. Sun PQ, Zhao SQ, Chang C, Chen JW. Study on production of ethyl levulinate from cellulose catalyzed by solid acid USY. Journal of Zhengzhou University (Engineering Science) 2014; 35 (3): 22-26. doi: 10.3969/j.issn.1671-6833.2014.03.006
  • 29. Li B, Chang C, Zhu WN, Wang LF, Zhu F, Qiao JY. Experimental study on ethyl levulinate production from cellulose catalyzed by solid acid catalyst. Acta Energiae Solaris Sinica 2015; 36 (7): 1768-1772. doi: CNKI:SUN:TYLX.0.2015-07-037
  • 30. Chang C, An R, Kong PF. Alcoholysis of cellulose into ethyllevulinate catalyzed by $SO_4 ^{2−}/ZrO_2$/USY. Journal of Zhengzhou University (Engineering Science) 2018; 39 (2): 80-85. doi: 10.13705/j.issn.1671-6833.2017.05.010
  • 31. Juan JC, Zhang JC, Yarmo MA. Efficient esterification of fatty acids with alcohols catalyzed by $Zr(SO_4)_2·4H_2 O$ under solvent-free condition. Catalysis Letters 2008; 126 (3-4): 319-324. doi: 10.1007/s10562-008-9622-2
  • 32. Juan JC, Zhang JC, Jiang YJ, Cao WL, Yarmo MA. The zirconium sulfate microcrystal structure in relation to their activity in the esterification. Journal of Molecular Catalysis A: Chemical 2007; 272 (1-2): 91-95. doi: 10.1016/j.molcata.2007.03.028
  • 33. Figueras F. Pillared clays as catalysts. Catalysis Reviews Science and Engineering 1988; 30: 457-499. doi: 10.1080/01614948808080811
  • 34. Liao YH, Liu QY, Wang TJ, Long JX, Zhang Q et al. Promoting hydrolytic hydrogenation of cellulose to sugar alcohols by mixed ball milling of cellulose and solid acid catalyst. Energy & Fuels 2014; 28 (9): 5778-5784. doi: 10.1021/ef500717p
  • 35. Ren W, Liu CH, Lian S, Li ZP. Flow cytometry-assisted mix-and-read assay for ultrasensitive detection of protein kinase activity by use of Zr4+-functionalized mesoporous $SiO_2$ microspheres. Analytical Chemistry 2013; 85 (22): 10956-10961. doi: 10.1021/ac4024457
  • 36. Juan JC, Zhang JC. Structure and reactivity of silica-supported zirconium sulfate for esterification of fatty acid under solvent-free condition. Applied Catalysis A: General 2007; 332 (2): 209-215. doi: 10.1016/j.apcata.2007.08.016
  • 37. Garcia-Sancho C, Cecilia JA, Merida-Robles JM, Gonzalez JS, Moreno-Tost R et al. Effect of the treatment with $H_3 PO_4$ on the catalytic activity of $Nb_2 O_5$ supported on Zr-doped mesoporous silica catalyst. Case study: glycerol dehydration. Applied Catalysis B: Environmental 2018; 221: 158-168. doi: 10.1016/j.apcatb.2017.09.016
  • 38. Ruffino F, Tomasello MV, Miritello M, De Bastiani R, Nicotra G et al. Analyses of the As doping of $SiO_2 /Si/SiO_2$ nanostructures. In: Kissinger G, Pizzini S, Tu H, Yamada Kaneta H (editors). Physica Status Solidi C: Current Topics in Solid State Physics. Weinheim, GER: Wiley, 2011, pp.863-866.
  • 39. Guo YH, Wang YH, Hu CW, Wang YH, Wang EB et al. Microporous polyoxometalates $POMs/SiO_2$ : synthesis and photocatalytic degradation of aqueous organocholorine pesticides. Chemistry of Materials 2000; 12 (11): 3501-3508. doi: 10.1021/cm000074+
  • 40. Madon RJ, Boudart M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Industrial and Engineering Chemistry Research Fundamentals 1902; 21: 438-447. doi: 10.1021/i100008a022
  • 41. Boudart M. Turnover rates in heterogeneous catalysis. Chemical Reviews 1995; 95: 661-666. doi: 10.1021/cr00035a009
  • 42. Braun JV, Santos SJ, Espindola GD, Fontoura LAM, Alves AK. Microwave heating and synthesis method influence in $SiO_2-ZrO_2$ mixed oxides preparation and its use as heterogeneous catalyst for biodiesel obtainment. Reaction Kinetics Mechanisms and Catalysis 2021; 132: 921-934. doi: 10.1007/s11144-021-01950-9
  • 43. Ma YD, Wang YR, Wu WQ, Zhang JY, Cao YN et al. Slurry-phase hydrocracking of a decalin-phenanthrene mixture by MoS2/SiO2-ZrO2 bifunctional catalysts. Industrial & Engineering Chemistry Research 2021; 60: 230-242. doi: 10.1021/acs.iecr.0c04999
  • 44. Zhou HB, Gao Y, Li J. Research of preparation of $SO_4^{2-}/TiO^2-ZrO_2$ and its application on synthesis of biodiesel from waste cooking oil. Applied Mechanics and Materials 2013; 316-317: 906-910. doi: 10.4028/www.scientific.net/AMM.316-317.906
  • 45. Gu YJ, Yan B. Europium (III) complex functionalized Si-MCM-41 hybrid materials with visible-light-excited luminescence. Inorganica Chimica Acta 2013; 408: 96-102. doi: 10.1016/j.ica.2013.09.008
  • 46. Mendez FJ, Llanos A, Echeverria M, Jauregui R, Villasana Y et al. Mesoporous catalysts based on Keggin-type heteropoly acids supported on MCM-41 and their application in thiophene hydride sulfurization. Fuel 2013; 110: 249-258. doi: 10.1016/j.fuel.2012.11.021
  • 47. Kim JH, Yoon SB, Kim JY, Chae YB, Yu JS. Synthesis of monodisperse silica spheres with solid core and mesoporous shell: morphological control of mesopores. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008; 313-314: 77-81. doi: 10.1016/j. colsurfa.2007.04.145
  • 48. Juan JC, Zhang JC, Yarmo MA. Study of catalysts comprising zirconium sulfate supported on a mesoporous molecular sieve HMS for esterification of fatty acids under solvent-free condition. Applied Catalysis A: General 2008; 347 (2): 133-141. doi: 10.1016/j. apcata.2008.06.004
  • 49. Evangelista JPC, Chellappa T, Coriolano ACF, Fernandes VJ, Souza LD et al. Synthesis of alumina impregnated with potassium iodide catalyst for biodiesel production from rice bran oil. Fuel Processing Technology 2012; 104: 90-95. doi: 10.1016/j.fuproc.2012.04.028
  • 50. Chang C, Xu GZ, Jiang XX. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology 2012; 121: 93-99. doi: 10.1016/j.biortech.2012.06.105
  • 51. Chang JL, Bai J, Chang C, Zhao SQ, Li HL et al. Products distribution of glucose through ethanolysis reaction catalyzed by extremely low acid under high temperature. Chemistry and Industry of Forest Products 2015; 35: 8-14. doi: 10.3969/j.issn.0253-2417.2015.06.002
  • 52. Zu WN, Chang C, Ma C, Du FG. Kinetics of glucose ethanolysis is catalyzed by extremely low sulfuric acid in ethanol medium. Chinese Journal of Chemical Engineering 2014; 22 (2): 238-242. doi: 10.1016/S1004-9541(14)60049-5
  • 53. Peng LC, Lin L, Zhang JH, Shi JB, Liu SJ. Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General 2011; 397 (1-2): 259-265. doi: 10.1016/j.apcata.2011.03.008
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Turkish perlite supported nickel oxide as the heterogeneous acid catalyst for a series of Claisen–Schmidt condensation reactions

Stuti KATARA, Ashu RANI, Sakshi Kabra MALPANI, Deepti GOYAL

Theoretical investigation on the addition reaction of the germylenoid $H_2$ GeLiCl with acetone

Bingfei YAN, Wenzuo LI, Xiaolin ZHANG

Sensitive and selective determination of imidacloprid with magnetic molecularly imprinted polymer by using LC/Q-TOF/MS

Raif İLKTAÇ, Zinar Pınar GÜMÜŞ

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Ding kai WANG, Wei ZHAO, Ming yu CUI, Tian-tian GUO, Shui yuan FU, Wei gang LI

Green biosynthesis, characterization, and cytotoxic effect of magnetic iron nanoparticles using Brassica Oleracea var capitata sub var rubra (red cabbage) aqueous peel extract

Salih PAŞA, Gülen Melike DEMİRBOLAT, Özge ÇEVİK, Ömer ERDOĞAN

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Binding of permanganate anion to pentaammineazidocobalt(III) cation in solution and solid phases: synthesis, characterization, X-ray structure, and genotoxic effects of $[Co(NH_3 )_5 N_3 ](MnO_4 )_2 ⋅H_2 O$

Jinkwon KIM, Vinit PRAKASH, Ritu BALA

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK

Synthesis and characterization of benzodioxinone mono-telechelics and their use in block copolymerization

Cumali ÇELİK

Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design

Zeynep CİĞEROĞLU