Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

This work describes the synthesis of mixed oxide film of vanadium and ruthenium by pulsed deposition technique on multiwall carbon nanotubes and the decoration of gold nanoparticles on the mixed film. A ternary electrocatalyst has been developed for the electrochemical oxidation of hydrazine by combining two metal oxide mixtures with Au nanoparticles. Surface morphology and chemical composition of the electrode have been examined with SEM, EDX, HRTEM, EIS, and XRD. The peak current of hydrazine increased 9 times at the AuNPs/(VOx-RuOx)/CNT/GCE compared to the bare GCE, and the peak potential shifted to negative 848 mV. Linear sweep voltammetry (LSV) and amperometric techniques revealed that the AuNPs/(VOx-RuOx)/CNT/GCE displays linear concentration range 2.5–10000 µM (LSV) and the concentration range 0.03–100 µM (amperometry). The limit of detection (LOD) is 0.5 μM and 0.1 μM at (S/N = 3) for LSV and amperometric technique, respectively. The results obtained show a good RSD% of 2.1%–3.2% and reasonable recovery of 97%–108% of hydrazine detection.

___

  • 1. Shukla M, Tiwari A, Brahme N, Kher RS, Dhoble SJ. Enhancing effect of hydrazine on chemiluminescence of luminol-H_2O_2$ system. Journal of Applied Spectroscopy 2013; 80 (2): 305-307. doi: 10.1007/s10812-013-9763-y
  • 2. Ensafi AA, Rezaei B. Flow injection determination of hydrazine with fluorimetric detection. Talanta 1998; 47 (3): 645-649. doi: 10.1016/ S0039-9140(98)00113-1
  • 3. Zargar B, Hatamie A. A simple and fast colorimetric method for detection of hydrazine in water samples based on formation of gold nanoparticles as a colorimetric probe. Sensors and Actuators B: Chemical 2013; 182: 706-710. doi: 10.1016/j.snb.2013.03.036
  • 4. Tsiasioti A, Tzanavaras PD. Automated fluorimetric sensor for hydrazine determination in water samples based on the concept of zone fluidics. Environmental Science and Pollution Research 2020; 1-8. doi: 10.1007/s11356-020-08979-8
  • 5. Gilbert R, Rioux R, Saheb SE. Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Analytical Chemistry 1984; 56 (1): 106-109. doi: 10.1021/ac00265a029
  • 6. Tajik S, Beitollahi H, Mohammadi SZ, Azimzadeh M, Zhang K et al. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC Advances 2020; 10 (51): 30481-30498. doi: 10.1039/d0ra03288c
  • 7. Daemi S, Ashkarran AA, Bahari A, Ghasemi S. Fabrication of a gold nanocage/graphene nanoscale platform for electrocatalytic detection of hydrazine. Sensors and Actuators B: Chemical 2017; 245: 55-65. doi: 10.1016/j.snb.2017.01.137
  • 8. Duan C, Dong Y, Sheng Q, Zheng J. A high-performance non-enzymatic electrochemical hydrazine sensor based on $NiCo_2S_4$ porous sphere. Talanta 2019; 198: 23-29. doi: 10.1016/j.talanta.2019.01.081
  • 9. Hatip M, Koçak S, Dursun Z. Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode. Turkish Journal of Chemistry 2021; 45 (1): 167-180. doi: 10.3906/KIM-2009-12
  • 10. Koçak S, Aslişen B. Hydrazine oxidation at gold nanoparticles and poly(bromocresol purple) carbon nanotube modified glassy carbon electrode. Sensors and Actuators B: Chemical 2014; 196: 610-618. doi: 10.1016/j.snb.2014.02.061
  • 11. Ensafi AA, Abarghoui MM, Rezaei B. Facile synthesis of Pt-Cu@silicon nanostructure as a new electrocatalyst supported matrix, electrochemical detection of hydrazine and hydrogen peroxide. Electrochimica Acta 2016; 190: 199-207. doi: 10.1016/j.electacta.2015.12.180
  • 12. Habibi E. Mesoporous Pd|β-SiCNW-nC based home made screen printed electrode for high sensitive detection of hydrazine. Microchemical Journal 2019; 149: 104004. doi: 10.1016/j.microc.2019.104004
  • 13. Yang Z, Zheng X, Zheng J. Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chemical Engineering Journal 2017; 327: 431-440. doi: 10.1016/j.cej.2017.06.120
  • 14. Tehrani RMA, Ab Ghani S. MWCNT-ruthenium oxide composite paste electrode as non-enzymatic glucose sensor. Biosensors and Bioelectronics 2012; 38 (1): 278-283. doi: 10.1016/j.bios.2012.05.044
  • 15. Zhang O, Yu HM, Lu LM, Wen YP, Duan XM et al. Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine. Chinese Journal of Polymer Science 2013; 31 (3): 419-426. doi: 10.1007/s10118-013-1230-y
  • 16. Erdoğdu G, Karagözler AE. Investigation and comparison of the electrochemical behavior of some organic and biological molecules at various conducting polymer electrodes. Talanta 1997; 44 (11): 2011-2018. doi: 10.1016/S0039-9140(96)02196-0
  • 17. Erdoğdu, Gamze; Karagözler AE. Investigation and comparison of the electrochemical behavior of acetaminophen at conducting organic polymers electrodes. Sensor Letters 2019; 17 (6): 431-435.
  • 18. Erdoğdu GE. The Investigation of electrochemical behavior of catechol at conducting polymer electrodes. Sensor Letters 2019; 17 (5): 365- 370.
  • 19. Koçak S, Aslışen B, Koçak ÇC. Determination of hydrazine at a platinum nanoparticle and poly(bromocresol purple) modified carbon nanotube electrode. Analytical Letters 2016; 49 (7): 990-1003. doi: 10.1080/00032719.2015.1038548
  • 20. Dai G, Xie J, Li C, Liu S. Flower-like $Co_3O_4$ /graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. Journal of Alloys and Compounds 2017; 727: 43-51. doi: 10.1016/j.jallcom.2017.08.100
  • 21. Shahid MM, Rameshkumar P, Basirunc WJ, Wijayantha U, Chiu WS et al. An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochimica Acta 2018; 259: 606-616. doi: 10.1016/j.electacta.2017.10.157
  • 22. Koçak S, Altın A, Koçak ÇC. Electrochemical determination of hydrazine at gold and platinum nanoparticles modified poly(L-serine) glassy carbon electrodes. Analytical Letters 2016; 49 (7): 1015-1031. doi: 10.1080/00032719.2015.1045586
  • 23. Koçak ÇC, Koçak S, Karabiberoğlu Ş, Dursun Z. Highly improved electrocatalytic oxidation of dimethylamine borane on silver nanoparticles modified polymer composite electrode. Turkish Journal of Chemistry 2020; 44 (1): 125-141. doi: 10.3906/kim-1906-23
  • 24. Wang L, Meng T, Jia H, Feng Y, Gong T et al. Electrochemical study of hydrazine oxidation by leaf-shaped copper oxide loaded on highly ordered mesoporous carbon composite. Journal of Colloid and Interface Science 2019; 549: 98-104. doi: 10.1016/j.jcis.2019.04.063
  • 25. Gui Z, Fan R, Mo W, Chen X, Yang L et al. Synthesis and characterization of reduced transition metal oxides and nanophase metals with hydrazine in aqueous solution. Materials Research Bulletin 2003; 38 (1): 169-176. doi: 10.1016/S0025-5408(02)00983-2
  • 26. Nguyen DM, Bach LG, Bui QB. Novel urchin-like FeCo oxide nanostructures supported carbon spheres as a highly sensitive sensor for hydrazine sensing application. Journal of Pharmaceutical and Biomedical Analysis 2019; 172: 243-252. doi: 10.1016/j.jpba.2019.04.008
  • 27. Beduk T, Bihar E, Surya SG, Castillo AN, Inal S et al. A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sensors and Actuators B: Chemical 2020; 306: 127539. doi: 10.1016/j.snb.2019.127539
  • 28. Rahman MM, Alam MM, Asiri AM. Selective hydrazine sensor fabrication with facile low-dimensional $Fe_2O_3/CeO_2$ nanocubes. New Journal of Chemistry 2018; 42 (12): 10263-10270. doi: 10.1039/c8nj01750f
  • 29. Özdokur KV, Tatli AYI, Yilmaz B, Koçak S, Ertaş FN. Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation. International Journal of Hydrogen Energy 2016; 41 (14): 5927-5933. doi: 10.1016/j.ijhydene.2016.02.127
  • 30. Ozdokur KV, Demir B, Yavuz E, Ulus F, Erten Ç et al. Pyranose oxidase and Pt–MnOx bionanocomposite electrode bridged by ionic liquid for biosensing applications. Sensors and Actuators B: Chemical 2014; 197: 123-128. doi: 10.1016/J.SNB.2014.01.122
  • 31. Özdokur KV, Koçak S, Ertaş FN. Nanostructured Metal-Metal Oxides and Their Electrocatalytic Applications. In: Advanced Coating Materials. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2018: 275-313. doi: 10.1002/9781119407652.ch10
  • 32. Jaksic JM, Nan F, Papakonstantinou GD, Botton GA, Jaksic MM. Theory, substantiation, and properties of novel reversible electrocatalysts for oxygen electrode reactions. The Journal of Physical Chemistry C 2015; 119 (21): 11267-11285. doi: 10.1021/jp510234f
  • 33. Sarno M, Ponticorvo E. Metal–metal oxide nanostructure supported on graphene oxide as a multifunctional electro-catalyst for simultaneous detection of hydrazine and hydroxylamine. Electrochemistry Communications 2019; 107: 106510. doi: 10.1016/j. elecom.2019.106510
  • 34. Yavuz E, Özdokur KV, Çakar I, Koçak S, Ertaş FN. Electrochemical preparation, characterization of molybdenum-oxide/platinum binary catalysts and its application to oxygen reduction reaction in weakly acidic medium. Electrochimica Acta. 2015; 151: 72-80. doi: 10.1016/j. electacta.2014.11.006
  • 35. Ozdokur KV, Demir B, Atman E, Tatlı AY, Yılmaz B et al. A novel ethanol biosensor on pulsed deposited MnOx-MoOx electrode decorated with Pt nanoparticles. Sensors and Actuators B: Chemical 2016; 237: 291-297. doi: 10.1016/j.snb.2016.06.100
  • 36. Ayaz S, Karakaya S, Emir G, Dilgin DG, Dilgin Y. A novel enzyme-free FI-amperometric glucose biosensor at Cu nanoparticles modified graphite pencil electrode. Microchemical Journal 2020; 154: 104586. doi: 10.1016/j.microc.2019.104586
  • 37. Emir G, Dilgin Y, Ramanaviciene A, Ramanavicius A. Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchemical Journal 2021; 161: 105751. doi: 10.1016/j.microc.2020.105751
  • 38. Akoğulları S, Çιnar S, Özdokur KV, Aydemir T, Ertaş FN et al. Pulsed deposited manganese and vanadium oxide film modified with carbon nanotube and gold nanoparticle: chitosan and ıonic liquid-based biosensor. Electroanalysis 2020; 32 (2): 445-453. doi: 10.1002/ elan.201900194
  • 39. Zare HR, Hashemi SH, Benvidi A. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine. Analytica Chimica Acta 2010; 668 (2): 182-187. doi: 10.1016/j.aca.2010.04.028
  • 40. Bakır ÇC, Şahin N, Polat R, Dursun Z. Electrocatalytic reduction of oxygen on bimetallic copper–gold nanoparticles–multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution. Journal of Electroanalytical Chemistry 2011; 662 (2): 275-280 doi: 10.1016/j.jelechem.2011.06.016
  • 41. Karaca, S. Preperation and characterization of metal nanoparticles modified ruthenium-vanadium oxide composite electrodes and application to hydrazine determination. MSc, Manisa Celal Bayar University, Manisa, Turkey, 2019.
  • 42. Koçak ÇC, Dursun Z. Enhanced electrocatalytic activity of copper phthalocyanine/multiwalled carbon nanotube composite electrode via Pt nanoparticle modification for oxygen reduction. Turkish Journal of Chemistry 2018; 42 (3): 623-638. doi: 10.3906/kim-1704-27
  • 43. Karuppiah C, Palanisamy S, Chen SM, Ramaraj SK, Periakaruppan P. A novel and sensitive amperometric hydrazine sensor based on gold nanoparticles decorated graphite nanosheets modified screen printed carbon electrode. Electrochimica Acta 2014; 139: 157-164. doi: 10.1016/j.electacta.2014.06.158
  • 44. Koçak S, Altın A, Koçak ÇC. Electrochemical determination of hydrazine at gold and platinum nanoparticles modified poly(L-serine) glassy carbon electrodes. Analytical Letters 2016; 49 (7): 1015-1031. doi: 10.1080/00032719.2015.1045586
  • 45. Zhang LF, Tang J, Liu SY, Peng OW, Shiet R al. A laser irradiation synthesis of strongly-coupled VOx-reduced graphene oxide composites as enhanced performance supercapacitor electrodes. Materials Today Energy 2017; 5: 222-229. doi: 10.1016/j.mtener.2017.07.004
  • 46. Vinoth V, Wu JJ, Asiri AM, Anandan S. Simultaneous detection of dopamine and ascorbic acid using silicate network interlinked gold nanoparticles and multi-walled carbon nanotubes. Sensors and Actuators B: Chemical 2015; 210: 731-741. doi: 10.1016/j.snb.2015.01.040
  • 47. Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari AR et al. Au-SH-SiO2 nanoparticles supported on metal-organic framework $(AuSH-SiO_2@Cu-MOF)$ as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochimica Acta 2013; 88: 301-309. doi: 10.1016/j.electacta.2012.10.064
  • 48. Teoman İ, Karakaya S, Dilgin Y. Sensitive and rapid flow ınjection amperometric hydrazine sensor using an electrodeposited gold nanoparticle graphite pencil electrode. Analytical Letters 2019; 52 (13): 2041-2056. doi: 10.1080/00032719.2019.1591429
  • 49. Ayaz S, Dilgin Y. Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochimica Acta 2017; 258: 1086-1095. doi: 10.1016/j.electacta.2017.11.162
  • 50. Zhao Z, Sun Y, Li P, Zhang W, Lian K et al. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine. Talanta 2016; 158: 283-291. doi: 10.1016/j.talanta.2016.05.065
  • 51. Zhang J, Liu H, Dou M, Wang F, Liu J et al. Synthesis and characterization of co3o4/multiwalled carbon nanotubes nanocomposite for amperometric sensing of hydrazine. Electroanalysis 2015; 27 (5): 1188-1194. doi: 10.1002/elan.201400546
  • 52. Li J, Xie H, Chen L. A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode. Sensors and Actuators B: Chemical 2011; 153 (1): 239-245. doi: 10.1016/j.snb.2010.10.040
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding

Gizem Nur DURAN, Mehmet ÖZBİL

Adsorptive performance of MWCNTs for simultaneous cationic and anionic dyes removal; kinetics, thermodynamics, and isotherm study

Abdul ZAHIR, Adnan AKHTAR, Zaheer ASLAM, Irfan YOUSAF

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Fibroin nanofibers production by electrospinning method

Derya SALTIK ÇİRKİN, Metin YÜKSEK

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Ding kai WANG, Wei ZHAO, Ming yu CUI, Tian-tian GUO, Shui yuan FU, Wei gang LI

Catalytic, theoretical, and biological investigation of an enzyme mimic model

Gülcihan GÜLSEREN

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Süleyman KOÇAK, Sibel KARACA

Theoretical investigation on the addition reaction of the germylenoid $H_2$ GeLiCl with acetone

Bingfei YAN, Wenzuo LI, Xiaolin ZHANG

Synthesis and characterization of benzodioxinone mono-telechelics and their use in block copolymerization

Cumali ÇELİK

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK