Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding

Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding

Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron $(Fe^{3+}($ ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from ‘open’ state to ‘closed’ state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in $Fe^{3+}$ ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between ‘closed’ state to ‘open’ state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in ‘closed’ state.

___

  • 1. Kurylo E. Etymologia: Neisseria. Emerging Infectious Diseases 2016; 22 (6): 1141-1141. doi: 10.3201/eid2206.et2206.
  • 2. Muttalif AR, Presa JV, Haridy H, Gamil A, Serra LC, et al. Incidence and prevention of invasive meningococcal disease in global mass gathering events. Infectious Diseases and Therapy 2019; 8 (4): 569-579. doi: 10.1007/s40121-019-00262-9.
  • 3. Ison CA, Dillon JA, Tapsall JW. The epidemiology of global antibiotic resistance among Neisseria gonorrhoeae and haemophilus ducreyi. Lancet 1998; 351: 8-11. doi: 10.1016/s0140-6736(98)90003-4.
  • 4. Deasy A, Read RC. Challenges for development of meningococcal vaccines in infants and children. Expert Review of Vaccines 2011; 10 (3): 335-343. doi: 10.1586/erv.11.3.
  • 5. ArchibaldFS, DeVoe IW. Iron acquisition by Neisseria meningitidis in vitro. Infection and Immunity 1980. 27 (2): 322-334. doi: 10.1128/ IAI.27.2.322-334.1980.
  • 6. Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA et al. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. Journal of Bacteriology 1992; 174 (18): 5788-5797. doi: 10.1128/jb.174.18.5788-5797.
  • 7. Cornelissen CN, Anderson JE, Boulton IC, Sparling PF. Antigenic and sequence diversity in gonococcal transferrin-binding protein A. Infection and Immunity 2000; 68 (8): 4725-4735; doi: 10.1128/IAI.68.8.4725-4735.2000.
  • 8. Legrain M, Mazarin V, Irwin SW, Bouchon B, Quentin-Millet MJ et al. Cloning and characterization of Neisseria meningitidis genes encoding the transferrin-binding proteins Tbp1 and Tbp2. Gene 1993; 130 (1): 73-80. doi: 10.1016/0378-1119(93)90348-7.
  • 9. Anderson JE, Sparling PF, Cornelissen CN. Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. Journal of Bacteriology 1994; 176 (11): 3162-3170. doi:10.1128/jb.176.11.3162-3170.1994.
  • 10. Oakhill JS, Sutton BJ, Gorringe AR, Evans RW. Homology modelling of transferrin-binding protein A from Neisseria meningitidis. Protein Engineering Design and Selection 2005; 18 (5): 221-228. doi: 10.1093/protein/gzi024.
  • 11. Chen CY, Berish SA, Morse SA, Mietzner TA. The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Molecular Microbiology 1993; 10 (2): 311-318. doi: 10.1111/j.1365-2958.1993. tb01957.x.
  • 12. Boulton IC, Yost MK, Anderson JE, Cornelissen CN. Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infection and Immunity 2000; 68 (12): 6988-6996. doi:10.1128/ iai.68.12.6988-6996.2000.
  • 13. Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J et al. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012; 483 (7387): 53-58. doi: 10.1038/nature10823.
  • 14. Ferguson AD, Chakraborty R, Smith BS, Esser L, Van der Helm D et al. Structural basis of gating by the outer membrane transporter FecA. Science 2002; 295 (5560): 1715-1719. doi: 10.1126/science.1067313.
  • 15. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Research 2004; 32: W665-W667. doi: 10.1093/nar/gkh381.
  • 16. Berendsen HJC, Van der Spoel D, Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications 1995; 91: 43-56. doi: 10.1016/0010-4655(95)00042-E.
  • 17. Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling 2001; 7: 306-317. doi: 10.1007/s008940100045.
  • 18. Van der SpoelD, LindahlE, Hess B, Van Buuren AR, Apol E et al. Gromacs User Manual version 3.3.2; 2005; AG Groningen, The Netherlands.
  • 19. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal 2011; 40 (7): 843-856. doi: 10.1007/s00249-011-0700-9.
  • 20. Tieleman DP, Berendsen HJC. Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. The Journal of Chemical Physics 1996; 105 (11): 4871-4880. doi: 10.1063/1.472323.
  • 21. Jorgensen WL, Chandrasekhar J, Madura JD. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 1983; 79 (2): 926-935. doi: 10.1063/1.445869.
  • 22. Miyamoto S, Kollman PA. SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. The Journal of Computational Chemistry 1992; 13: 952-1062. doi: 10.1002/jcc.540130805.
  • 23. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. The Journal of Computational Chemistry 1997; 18 (12): 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
  • 24. Darden T, York D, Pedersen L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics 1993; 98: 10089-10092. doi: 10.1063/1.464397.
  • 25. Hockney RW, Goel SP, Eastwood JW. Quiet high-resolution computer models of a plasma. Journal of Computational Physics 1974; 14 (2): 148-158. doi: 10.1016/0021-9991(74)90010-2.
  • 26. Humphrey W, Dalke A, Schulten K.VMD-visual molecular dynamics. Journal of Molecular Graphics 1996; 14: 33-38. doi: 10.1016/0263- 7855(96)00018-5.
  • 27. Şensoy Ö. The single nucleotide β-arrestin2 variant, A248T, resembles dynamical properties of activated arrestin. Turkish Journal of Chemistry 2020; 44: 409-420. doi: 10.3906/kim-1910-46.
  • 28. DeRocco AJ, Yost-Daljev MK, Kenney CD, Cornelissen CN. Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system. Biometals 2009; 22 (3): 439-51. doi: 10.1007/s10534-008-9179-y.
  • 29. Pogoutse AK, Moraes TF. Iron acquisition through the bacterial transferrin receptor. Critical Reviews in Biochemistry and Molecular Biology 2017; 52 (3): 314-326. doi: 10.1080/10409238.2017.1293606.
  • 30. Rohde KH, Dyer DW. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Frontiers in Bioscience: A Journal and Virtual Library 2003; 8: d1186-d1218.doi: 10.2741/1133.
  • 31. Halbrooks PJ, He QY, Briggs SK, Everse SJ, Smith VC et al. Investigation of the mechanism of iron release from the C-lobe of human serum transferrin: mutational analysis of the role of a pH sensitive triad. Biochemistry 2003; 42 (13): 3701-3707. doi: 10.1021/bi027071q.
  • 32. Steere AN, Byrne SL, Chasteen ND, Mason AB. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochimica et Biophysica Acta 2012; 1820 (3): 326-333. doi: 10.1016/j.bbagen.2011.06.003.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK

Binding of permanganate anion to pentaammineazidocobalt(III) cation in solution and solid phases: synthesis, characterization, X-ray structure, and genotoxic effects of $[Co(NH_3 )_5 N_3 ](MnO_4 )_2 ⋅H_2 O$

Jinkwon KIM, Vinit PRAKASH, Ritu BALA

Synthesis of $Ni/Al_2 O3$ catalysts via alkaline polyol method and hydrazine reduction method for the partial oxidation of methane

Tuba GÜRKAYNAK ALTINÇEKİÇ, Mehmet Ali Faruk ÖKSÜZÖMER, Ezgi BAYRAKDAR ATEŞ

Green biosynthesis, characterization, and cytotoxic effect of magnetic iron nanoparticles using Brassica Oleracea var capitata sub var rubra (red cabbage) aqueous peel extract

Salih PAŞA, Gülen Melike DEMİRBOLAT, Özge ÇEVİK, Ömer ERDOĞAN

Evaluation of quercetin as a potential β-lactamase CTX-M-15 inhibitor via the molecular docking, dynamics simulations, and MMGBSA

Emrah SARIYER, Ayşegül SARAL

Detection of bacteria using antimicrobial polymer derived via ring-opening metathesis (romp) pathway

Mustafa OKUTAN, Markus GALLE, Hüsnü CANKURTARAN, N. Ceren SÜER, Tarık EREN, Tülin ARASOĞLU

Catalytic, theoretical, and biological investigation of an enzyme mimic model

Gülcihan GÜLSEREN

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Ding kai WANG, Wei ZHAO, Ming yu CUI, Tian-tian GUO, Shui yuan FU, Wei gang LI

Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design

Zeynep CİĞEROĞLU

Theoretical investigation on the addition reaction of the germylenoid $H_2$ GeLiCl with acetone

Bingfei YAN, Wenzuo LI, Xiaolin ZHANG