Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics

Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics

Graphitic carbon nitride (g-CN) has gained wide interest in many areas, such as energy and the environmental remediation as a layered polymeric semiconductor that allows the formation of catalytically active Schottky junctions due to its proper electronic band structure. Interestingly, although it is known that the precursors used in the synthesis, can influence the properties of the g-CN, no detailed study on these effects on Schottky junctions could be found in the literature. In this research, the effects of g-CNs synthesized by thermal polycondensation of different precursors on the photocatalytic efficiency of Schottky junctions were investigated. For this purpose, urea, thiourea, melamine, and guanidine hydrochloride were used as different precursors, while the photocatalytic dehydrogenation of formic acid was used as a test reaction. The Schottky junctions were formed by decorating the as-prepared g-CNs with AgPd alloy nanoparticles (NP), which were synthesized by reduction of Ag and Pd salts with $NaBH_4$ . The structural, electronic and charge carrier dynamics of all prepared structures have been fully characterized by TEM, XRD, BET, XPS, UV-Vis DRS, PL, and PL life measurements. The results showed that the charge transfer dynamics of g-CNs surface defects are more effective in the photocatalytic performance of Schottky junctions than in structural features such as the size of the metal NPs or the surface area of the catalysts.

___

  • 1. Agustina TE, Ang HM, Vareek VK. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2005; 6 (4): 264-273. doi: 10.1016/j.jphotochemrev.2005.12.003
  • 2. Ola O, Maroto-Valer MM. Review of material design and reactor engineering on $TiO_2$ photocatalysis for $CO_2$ reduction. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews 2015; 24: 16-42. doi: 10.1016/j.jphotochemrev.2015.06.001
  • 3. Ismail AA, Bahnemann DW. Photochemical splitting of water for hydrogen production by photocatalysis: a review. Solar Energy Materials and Solar Cells 2014; 128: 85-101. doi: 10.1016/j.solmat.2014.04.037
  • 4. Boyjoo Y, Sun H, Liu J, Pareek VK, Wang S. A review on photocatalysis for air treatment: from catalyst development to reactor design. Chemical Engineering Journal 2017; 310: 537-559. doi: 10.1016/j.cej.2016.06.090
  • 5. Samadi M, Sarikhani N, Zirak M, Zhang H, Zhang HL et al. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons 2018; 3 (2): 90-204. doi: 10.1039/c7nh00137a
  • 6. Ponraj JS, Xu Z, Chander S, Wang F, Wang Z et al. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Materials 2016. doi: 10.1088/2053-1583/3/4/042001
  • 7. Wang X, Maeda K, Thomas A, Takanabe K, Xin G et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials 2009; 8 (1): 76-80. doi: 10.1038/nmat2317
  • 8. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride $(g-C_3N_4)$-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical Reviews 2016; 116 (12): 7159-7329. doi: 10.1021/ acs.chemrev.6b00075
  • 9. Tang ML, Bao Z. Halogenated materials as organic semiconductors. Chemistry of Materials 2011; 23 (3): 446-455. doi: 10.1021/cm102182x
  • 10. Cui Y, Tang Y, Wang X. Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants. Materials Letters 2015; 161: 197-200. doi: 10.1016/j.matlet.2015.08.106
  • 11. Wang Y, Wang F, Zuo Y, Zhang X, Cui LF. Simple synthesis of ordered cubic mesoporous graphitic carbon nitride by chemical vapor deposition method using melamine. Materials Letters 2014; 136: 271-273. doi: 10.1016/j.matlet.2014.08.078
  • 12. Xu Z, Guan L, Li H, Sun J, Ying Z et al. Structure transition mechanism of single-crystalline silicon, $(g-C_3N_4)$ , and diamond nanocone arrays synthesized by plasma sputtering reaction deposition. Journal of Physical Chemistry C 2015; 119 (52): 29062-29070. doi: 10.1021/acs. jpcc.5b10952
  • 13. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 2008; 18 (41): 48934908. doi: 10.1039/b800274f
  • 14. Kessler FK, Zheng Y, Schwarz D, Merschjann C, Schnick W et al. Functional carbon nitride materials-design strategies for electrochemical devices. Nature Reviews Materials 2017; 2 (6): 1-17. doi: 10.1038/natrevmats.2017.30
  • 15. Teixeira IF, Barbosa ECM, Tsang SCE, Camargo PHC. Carbon nitrides and metal nanoparticles: from controlled synthesis to design principles for improved photocatalysis. Chemical Society Reviews 2018; 47 (20): 7783-7817. doi: 10.1039/c8cs00479j
  • 16. Schwinghammer K, Tuffy B, Mesch MB, Wirnhier E, Martineau C et al. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angewandte Chemie International Edition 2013; 52 (9): 2435-2439. doi: 10.1002/anie.201206817
  • 17. Zheng Y, Lin L, Wang B, Wang X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie International Edition 2015; 54 (44): 12868-12884. doi: 10.1002/anie.201501788
  • 18. Li X, Zhang J, Shen L, Ma Y, Lei W et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Applied Physics A: Materials Science and Processing 2009; 94 (2): 387-392. doi: 10.1007/s00339-008-4816-4
  • 19. Liu J, Zhang T, Wang Z, Dawson G, Chen W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry 2011; 21 (38): 14398-14401. doi: 10.1039/c1jm12620b
  • 20. Dong F, Ou M, Jiang Y, Guo S, Wu Z. Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Industrial and Engineering Chemistry Research 2014; 53 (6): 2318-2330. doi: 10.1021/ie4038104
  • 21. Groenewolt M, Antonietti M. Synthesis of $(g-C_3N_4)$ nanoparticles in mesoporous silica host matrices. Advanced Materials 2005; 17 (14): 1789-1792. doi: 10.1002/adma.200401756
  • 22. Dong F, Wu L, Sun Y, Fu M, Wu Z et al. Efficient synthesis of polymeric $(g-C_3N_4)$ layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry 2011; 21 (39): 15171-15174. doi: 10.1039/c1jm12844b
  • 23. Rono N, Kibet JK, Martincigh BS, Nyamori VO. A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences 2020. doi: 10.1080/10408436.2019.1709414
  • 24. Fu J, Yu J, Jiang C, Cheng B.$(g-C_3N_4)$ -based heterostructured photocatalysts. Advanced Energy Materials 2018; 8 (3): 1701503. doi: 10.1002/ aenm.201701503
  • 25. Onishi N, Iguchi M, Yang X, Kanega R, Kawanami H et al. Development of effective catalysts for hydrogen storage technology using formic acid. Advanced Energy Materials 2019; 9 (23): 1801275. doi: 10.1002/aenm.201801275
  • 26. Xiao L, Jun Y-S, Wu B, Liu D, Chuong TT et al. Carbon nitride supported AgPd alloy nanocatalysts for dehydrogenation of formic acid under visible light. Journal of Materials Chemistry A 2017; 5 (14): 6382-6387. doi: 10.1039/C7TA01039G
  • 27. Willner I, Goren Z. Photodecomposition of formic acid by cadmium sulphide semiconductor particles. Journal of the Chemical Society, Chemical Communications 1986; (2): 172-173. doi: 10.1039/C39860000172
  • 28. Navlani-García M, Salinas-Torres D, Mori K, Kuwahara Y, Yamashita H. Photocatalytic approaches for hydrogen production via formic acid decomposition. Topics in Current Chemistry 2019; 377 (5): 1-31. doi: 10.1007/s41061-019-0253-4
  • 29. Yao F, Li X, Wan C, Xu L, An Y et al. Highly efficient hydrogen release from formic acid using a graphitic carbon nitride-supported AgPd nanoparticle catalyst. Applied Surface Science 2017; 426: 605-611. doi: 10.1016/J.APSUSC.2017.07.193
  • 30. Ping Y, Yan JM, Wang ZL, Wang HL, Jiang Q. Ag0.1-Pd 0.9/rGO: an efficient catalyst for hydrogen generation from formic acid/sodium formate. Journal of Materials Chemistry A 2013; 1 (39): 1218812191. doi: 10.1039/c3ta12724a
  • 31. Altan O, Metin Ö. Boosting formic acid dehydrogenation via the design of a Z-scheme heterojunction photocatalyst: the case ofgraphitic carbon nitride/$Ag/Ag_3 PO_4-AgPd$ quaternary nanocomposites. Applied Surface Science 2021; 535: 147740. doi: 10.1016/j. apsusc.2020.147740
  • 32. Dong F, Wang Z, Sun Y, Ho W-K, Zhang H. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of Colloid and Interface Science 2013; 401: 70-79. doi: 10.1016/J.JCIS.2013.03.034
  • 33. Cui J, Qi D, Wang X. Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acidbase chemical peeling for ultra-thin graphite carbon nitride nanosheets. Ultrasonics Sonochemistry 2018; 48: 181-187. doi: 10.1016/j. ultsonch.2018.05.020
  • 34. Rono N, Kibet JK, Martincigh BS, Nyamori VO. A comparative study between thermal etching and liquid exfoliation of bulk graphitic carbon nitride to nanosheets for the photocatalytic degradation of a model environmental pollutant, Rhodamine B. Journal of Materials Science: Materials in Electronics 2021; 32 (1): 687-706. doi: 10.1007/s10854-020-04849-8
  • 35. Zhang D, Guo Y, Zhao Z. Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental 2018; 226: 1-9. doi: 10.1016/J. APCATB.2017.12.044
  • 36. Liu X, Su P, Chen Y, Zhu B, Zhang S et al. $(g-C_3N_4)$ supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid. New Journal of Chemistry 2018; 42 (12): 9449-9454. doi: 10.1039/c8nj00404h
  • 37. Sun J, Fu Y, He G, Sun X, Wang X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental 2015; 165: 661-667. doi: 10.1016/j.apcatb.2014.10.072
  • 38. Zhang S, Metin Ö, Su D, Sun S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angewandte Chemie International Edition 2013; 52 (13): 3681-3684. doi: 10.1002/anie.201300276
  • 39. Wang Z, Guan W, Sun Y, Dong F, Zhou Y et al. Water-assisted production of honeycomb-like $(g-C_3N_4)$ with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 2015; 7 (6): 2471-2479. doi: 10.1039/c4nr05732e
  • 40. Han Q, Wang B, Gao J, Cheng Z, Zhao Y et al. Atomically thin mesoporous nanomesh of graphitic $C_3N_4$ for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016; 10 (2): 2745-2751. doi: 10.1021/acsnano.5b07831
  • 41. Jiang J, Ou-Yang L, Zhu L, Zheng A, Zou J et al. Dependence of electronic structure of $g-C_3N_4$ on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014; 80 (1): 213221. doi: 10.1016/j.carbon.2014.08.059
  • 42. Cui Y, Zhang G, Lin Z, Wang X. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental 2016; 181: 413-419. doi: 10.1016/j.apcatb.2015.08.018
  • 43. Lin Q, Li L, Liang S, Liu M, Bi J et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental 2015; 163: 135-142. doi: 10.1016/j.apcatb.2014.07.053
  • 44. Bai S, Jiang J, Zhang Q, Xiong Y. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews 2015; 44 (10): 2893-2939. doi: 10.1039/c5cs00064e
  • 45. Zhang G, Li G, Lan ZA, Lin L, Savateev A et al. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angewandte Chemie - International Edition 2017; 56 (43): 13445-13449. doi: 10.1002/anie.201706870
  • 46. Nayak S, Parida KM. Deciphering Z-scheme charge transfer dynamics in heterostructure $NiFe-LDH/N-rGO/g-C_3N_4$ nanocomposite for photocatalytic pollutant removal and water splitting reactions. Scientific Reports 2019; 9 (1): 2458. doi: 10.1038/s41598-019-39009-4
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of $Ni/Al_2 O3$ catalysts via alkaline polyol method and hydrazine reduction method for the partial oxidation of methane

Tuba GÜRKAYNAK ALTINÇEKİÇ, Mehmet Ali Faruk ÖKSÜZÖMER, Ezgi BAYRAKDAR ATEŞ

Novel mixed ligand coordination compounds of some rare earth metal cations containing acesulfamato/N,N-diethylnicotinamide

Dursun Ali KÖSE, Leriman ZEYBEL

Hybrid paper sheets with improved barrier properties

Çağla SÖZ

Preparation of ethyl levulinate from wheat stalk over $Zr(SO_4)_2/SiO_2$

Ding kai WANG, Wei ZHAO, Ming yu CUI, Tian-tian GUO, Shui yuan FU, Wei gang LI

Fibroin nanofibers production by electrospinning method

Derya SALTIK ÇİRKİN, Metin YÜKSEK

Feature of catalysis on bimetallic alloys Zr with V, Mo, and Fe in the reaction of methanol oxidation

Arif EFENDI, Lala MAGERRAMOVA, Adila ALIYEVA, Lyudmila KOJA ROVA, Elmir BABAYEV

Green biosynthesis, characterization, and cytotoxic effect of magnetic iron nanoparticles using Brassica Oleracea var capitata sub var rubra (red cabbage) aqueous peel extract

Salih PAŞA, Gülen Melike DEMİRBOLAT, Özge ÇEVİK, Ömer ERDOĞAN

Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design

Zeynep CİĞEROĞLU

Multiple objective optimization of air assisted liquid-liquid microextraction combined with solidified floating organic drop microextraction for simultaneous determination of trace copper and nickel

Simin MALEKNIA, Fereshteh ISLAMI BONAB, Sanaz SAJEDI AMIN, Saeed Mohammad SOROURADDIN, Abdolhossein NASERI

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Süleyman KOÇAK, Sibel KARACA