Fibroin nanofibers production by electrospinning method

Fibroin nanofibers production by electrospinning method

Silk fibroin, which has many characteristic properties such as low inflammation reaction, biodegradation, suppleness, good antithrombogenic details, biocompatibility and high tensile strength is a very good candidate for biomedical applications. Electrospinning procures high surface area, porous, nanofiber dimension fiber generation, which is a plain method. An experimental study was carried out to produce nanofiber structure from silk fibroin by electrospinning and the electrospinning parameters for the spinning of uniform, continuous and silk fibroin fibers were optimized. As a result, the effect of variables of concentration, distance and applied voltage on the strength, thickness, surface structure, fiber diameter of nanomaterial was investigated. Then, in vitro cell viability of the silk fibroin mat was analyzed. It was seen that the strength, mat thickness, and fiber diameter increased with solution concentration rise. It was found that the values of the fiber diameter and tensile strength decreased with increasing distance. It was determined that the effect of distance varies depending on the concentration in the mat thicknesses. The tensile strength was affected inversely proportional the applied voltage rises and distance. It was found that the fiber diameter values decreased together with increasing applied voltage. At cell viability of silk fibroin mat was occurred high cell viability after 24 h, but it was obtained low cell viability at the 48th h.

___

  • 1. Kozlowski RM. Handbook of natural fibres Volume 1: Types, properties and factors affecting breeding and cultivation. United Kingdom: Woodhead Publishing Limited, 2012.
  • 2. Kundu SC. Silk Biomaterials for Tissue Engineering and Regenerative Medicine. United Kingdom: Woodhead Publishing Limited, 2014.
  • 3. Kızıldağ N. Improvement of the properties of electrospun silk fibroin nanoweb. PhD, İstanbul Technical University, İstanbul, Turkey, 2011.
  • 4. Başer İ. Elyaf Bilgisi. İstanbul, Turkey: Marmara Üniversitesi Döner Sermaye İşletmesi Teknik Eğitim Fakültesi Matbaa Birimi, 2002.
  • 5. Kozlowski RM. Handbook of natural fibres Volume 2: Processing and applications. United Kingdom: Woodhead Publishing Limited, 2012.
  • 6. Vepari C, Kaplan DL. Silk as a biomaterial. Progress in Polymer Science 2007; 32 (8-9): 991-1007. doi: 10.1016/j.progpolymsci.2007.05.013
  • 7. Cao T, Zhang Y. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Materials Science and Engineering 2016; C 61: 940- 952. doi: 10.1016/j.msec.2015.12.082
  • 8. Shamey R, Swatwarakul W. Innovative critical solutions in the dyeing of protein textile materials. Textile Progress 2014; 46 (4): 323-450. doi: 10.1080/00405167.2014.980639
  • 9. Akbaş E. A study on silk fiber spinning on rotor spinning system. MSc, Ege University, İzmir, Turkey, 2011.
  • 10. Sasithorn N, Martinova L. Effect of calcium chloride on electrospinning of silk fibroin nanofibres. In: RMUTP International Conference: Textile & Fashion; Bangkok, Thailand; 2012.
  • 11. Kundu B, Rajkowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews 2013; 65: 457-470. doi: 10.1016/j.addr.2012.09.043
  • 12. Wade LE. Wound Healing Cellular Mechanisms, Alternative Therapies and Clinical Outcomes. New York, NY, USA: Nova Science Publishers, 2015.
  • 13. Zhang Q, Yan S, Li M. Porous materials based on Bombyx mori silk fibroin. Journal of Fiber Bioengineering and Informatics 2010; 3 (1). doi: 10.3993/jfbi06201001
  • 14. Park YR, Ju HW, Lee JM, Kim DK, Lee OJ et al. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. International Journal of Biological Macromolecules 2016; 93: Part B: 1567-1574. doi: 10.1016/j.ijbiomac.2016.07.047
  • 15. Kenry, Teck Lim C. Nanofiber technology: current status and emerging developments. Progress in Polymer Science 2017; 70: 1-17. doi: 10.1016/j.progpolymsci.2017.03.002
  • 16. Can N, Ersoy MS. Nanolif Yapılı Polimerik Doku İskeleleri. Tekstil ve Mühendis 2014; 21: (95): 38-50. doi: 10.7216/130075992014219505 (in Turkish with an abstract in English)
  • 17. Stanger J, Tucker N, Staiger M, Electrospinning. Rapra Review Reports. United Kingdom: Smithers Rapra Technology, 2005. 18. Srinivasan A, Bandyopadhyay S. Advances in polymer materials and technology. Abingdon, UK: Taylor & Francis Group, 2017.
  • 19. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996; 7 (3): 216-223. doi: 10.1088/0957-4484/7/3/009
  • 20. Kozanoğlu GS. Nanofibre production technology by electrospinning method. MSc, İstanbul Technical University, İstanbul, Turkey, 2006.
  • 21. Okutan N. Using electrospun gelatin nanofibers as stabilizers in emulsions. MSc, İstanbul Technical University, İstanbul, Turkey, 2013.
  • 22. Erdem R. Fabricating nanofiber based wound dressing material. PhD, Marmara University, İstanbul, Turkey, 2013.
  • 23. Söylemez E. Fabrication and characterization of Polyvinyl alcohol-Polyethyleneimine (PVA-PEI) composite nanofibers by electrospinning and their applications to various fields. MSc, Hitit University, Çorum, Turkey, 2016.
  • 24. Canbolat MF, Tang C, Bernacki SH, Pourdeyhimi B, Khan S. Mammalian cell viability in electrospun composite nanofiber structure. Macromolecular Bioscience 2011; 11: 1346-1356. doi: 10.1002/mabi.201100108
  • 25. Sukigara S, Gandhi M, Ayutsede J, Micklus M, Ko F. Regeneration of Bombyx mori silk by electrospinning-part 1: processing parameters and geometric properties. Polymer 2003; 44: 5721-5727. doi: 10.1016/S0032-3861(03)00532-9
  • 26. Wang H, Zhang Y, Shao H, Hu X. Electrospun ultra-fine silk fibroin fibers from aqueous solutions. Journal of Materials Science 2005; 40: 5359-5363. doi: 10.1007/s10853-005-4332-2
  • 27. Zhou J, Cao C, Ma X. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. International Journal of Biological Macromolecules 2009; 45: 504-510. doi: 10.1016/j.ijbiomac.2009.09.006
  • 28. Kumar DS, Dhandayuthapani B, Yoshina Y, Maekawa T. Fabrication and characterization of nanofibrous scaffold developed by electrospinning. Materials Research 2011; 14 (3): 317-325. doi: 10.1590/S1516-14392011005000064
  • 29. Kamalha E, Zheng YS, Zeng YC, Mwasiagi JI. Effect of solvent concentration on morphology of electrospun Bombyx mori silk. Indian Journal of Fibre & Textile Research 2014; 39: 201-203.
  • 30. Zhou W, Feng Y, Yang J, Fan J, Lv J et al. Electrospun scaffolds of silk fibroin and poly(lactide-co-glycolide) for endothelial cell growth. Journal of Materials Science: Materials and Medicine 2015; 26: 56. doi: 10.1007/s10856-015-5386-6
  • 31. Siridamrong P, Swasdison S, Thamrongananskul N. Preparation and characterization of polymer blends from Nang noi Srisaket 1 silk fibroin, gelatin, and chitosan nanofiber mats using formic acid solution. Key Engineering Materials 2015; 659: 28-34. doi: 10.4028/www. scientific.net/KEM.659.28
  • 32. Yuan H, Shi H, Qiu X, Chen Y. Mechanical property and biological performance of electrospun silk fibroin-polycaprolactone scaffolds with aligned fibers. Journal of Biomaterials Science Polymer Edition 2016; 27: (3): 263-275. doi: 10.1080/09205063.2015.1120475
  • 33. Singh BN, Panda NN, Pramanik K. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. International Journal of Biological Macromolecules 2016; 87: 201-207. doi: 10.1016/j.ijbiomac.2016.01.120
  • 34. Ju HW, Lee OJ, Lee JM, Moon BM, Park HJ et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model, International Journal of Biological Macromolecules 2016; 85: 29-39. doi: 10.1016/j.ijbiomac.2015.12.055
  • 35. Yas MW, Bowlin GL, Lemmon CA, Dreau D. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Materials Science and Engineering 2016; C 59: 1168-1180. doi: 10.1016/j.msec.2015.10.007
  • 36. Shayannia M, Sajjadi H, Motaghitalab V, Haghi AK. Effect of multi wall carbon nanotubes on characteristics and morphology of nanofibers scaffolds composited of MWNTs/silk fibroin. Advanced Powder Technology 2017; 28: 775-784. doi: 10.1016/j.apt.2016.11.025
  • 37. Yang X, Fan L, Ma L, Wang Y, Lin S et al. Green electropun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Materials and Design 2017; 119: 76-84. doi: 10.1016/j.matdes.2017.01.023
  • 38. Taddei P, Tozzi S, Zuccheri G, Martinotti S, Ranzato E. Intermolecular interactions between B. Mori silk fibroin and poly(L-lactic acid) in electrospun composite nanofibrous scaffolds. Materials Science and Engineering 2017; C 70: 777-787. doi: 10.1016/j.msec.2016.09.055
  • 39. Zhang X, Baughman BC, Kaplan DL. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials 2008; 29: 2217-2227. doi: 10.1016/j.biomaterials.2008.01.022
  • 40. Kundu J, Chung Y, Ha Kim Y, Tae G, Kundu SC. Silk nanoparticles for cellular uptake and control release. International Journal of Pharmaceutics 2010; 388: 242-250. doi: 10.1016/j.ijpharm.2009.12.052
  • 41. Çalamak S, Erdoğdu C, Özalp M, Ulubayram K. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Materials Science and Engineering 2014; C 43: 11-20. doi: 10.1016/j.msec.2014.07.001
  • 42. Pignatelli C, Perotto G, Nardini M, Cancedda R, Mastrogiacomo M et al. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomaterialia 2018; 73: 365-376: doi: 10.1016/j.actbio.2018.04.025
  • 43. Amiraliyan N, Nouri M, Haghighat Kish M. Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polymer Science Serie A 2010; 52: (4): 407-412. doi: 10.1134/S0965545X10040097
  • 44. Cai Z, Mo X, Zhang K, Fan L, Yin A et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. International Journal of Molecular Sciences 2010; 11: 3529-3539. doi: 10.3390/ijms11093529
  • 45. Huang J, Liu L, Yao J. Electrospinning of Bombyx mori silk fibroin nanofiber mats reinforced by cellulose nanowhiskers. Fibers and Polymers 2011; 12 (8): 1002-1006. doi: 10.1007/s12221-011-1002-7
  • 46. Zhang H, Li LL, Dai FY, Zhang HH, Ni B et al. Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. Journal of Translational Medicine 2012; 10: 117. doi: 10.1186/1479-5876-10-117
  • 47. İridağ Y, Kazancı M. Preparation and characterization of Bombyx mori silk fibroin and wool keratin. Journal of Applied Polymer Science 2006; 100: 4260-4264. doi: 10.1002/app.23810
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Green biosynthesis, characterization, and cytotoxic effect of magnetic iron nanoparticles using Brassica Oleracea var capitata sub var rubra (red cabbage) aqueous peel extract

Salih PAŞA, Gülen Melike DEMİRBOLAT, Özge ÇEVİK, Ömer ERDOĞAN

Impact of graphitic carbon nitrides synthesized from different precursors on Schottky junction characteristics

Orhan ALTAN

Remarkable bismuth-gold alloy decorated on MWCNT for glucose electrooxidation: the effect of bismuth promotion and optimization via response surface methodology

Ömer Faruk ER, Berdan ULAŞ, Hilal DEMİR KIVRAK

Structural and adsorption behaviour of ZnO/aminated SWCNT-COOH for malachite green removal: face-centred central composite design

Zeynep CİĞEROĞLU

Hybrid paper sheets with improved barrier properties

Çağla SÖZ

Adsorptive performance of MWCNTs for simultaneous cationic and anionic dyes removal; kinetics, thermodynamics, and isotherm study

Abdul ZAHIR, Adnan AKHTAR, Zaheer ASLAM, Irfan YOUSAF

Preconcentration of rifampicin prior to its efficient spectroscopic determination in the wastewater samples based on a nonionic surfactant

Haji MUHAMMAD, Bushra ISMAIL, Afaq Ullah KHAN, Faheem SHAH, Rafaqat Ali KHAN, Asad Mohammad KHAN

Fabrication and characterization of enhanced hydrazine electrochemical sensor based on gold nanoparticles decorated on the vanadium oxide, ruthenium oxide nanomaterials, and carbon nanotubes composites

Süleyman KOÇAK, Sibel KARACA

Structural rearrangement of Neisseria meningitidis transferrin binding protein A (TbpA) prior to human transferrin protein (hTf) binding

Gizem Nur DURAN, Mehmet ÖZBİL

Synthesis and characterization of benzodioxinone mono-telechelics and their use in block copolymerization

Cumali ÇELİK