Effect of Mg doping on morphology, photocatalytic activity and related biological properties of $Zn_{1−x}Mg_xO$ nanoparticles

Effect of Mg doping on morphology, photocatalytic activity and related biological properties of $Zn_{1−x}Mg_xO$ nanoparticles

The objective of this study is to synthesize ZnO and Mg doped $Zn_{1−x}Mg_xO$ nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate $(Zn(CH_3 COO)_2 .2H_2 O)$ and magnesium acetate tetrahydrate $(Mg(CH_3 COO)_2 .4H_2 O)$ as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of $Zn_{1−x}Mg_xO$ nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO $(Zn_{1−x}Mg_xO($nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of $Zn _{0.90} Mg _{0.10} O$ photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli (E. coli) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicated that the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli. While Zn 0.90 Mg 0.10 O totally inhibited the growth of E. coli, upper and lower dopant concentrations did not show antibacterial activity

___

  • 1. Zak AK, Majid WHA, Darroudi M, Yousefi R. Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Materials Letters 2011; 65: 70-73.
  • 2. Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi, M. Fabrication and characterization of gelatin stabilized silver nanoparticles under UV-Light. International Journal of Molecular Sciences 2011; 12: 6346-6356.
  • 3. Darroudi M, Khorsand Zak A, Muhamad MR, Huang NM, Hakimi M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Materials Letters 2012; 66: 117-120.
  • 4. Darroudi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Hosseini HA et al. Green synthesis and evaluation of metabolic activity of starch mediated nanoceria. Ceramics International 2014; 40: 2041-2045.
  • 5. Edalati K, Shakiba A, Vahdati-Khaki J, Zebarjad SM. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers. Materials Research Bulletin 2016; 74: 374-379.
  • 6. Xu H, Wang H, Zhang Y, He W, Zhu M et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceramics International 2004; 30(1): 93-97.
  • 7. Guler A, Arda L, Dogan N, Boyraz C, Ozugurlu E. The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International 2019; 45 (2): 1737-1745.
  • 8. Kaya S, Akcan D, Ozturk O, Arda L. Enhanced mechanical properties of yttrium doped ZnO nanoparticles as determined by instrumented indentation technique. Ceramics International 2018; 44 (9): 10306-10314.
  • 9. Boyraz C, Dogan N, Arda L. Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceramics International 2017; 43 (17): 15986-15991.
  • 10. Asikuzun E, Ozturk O, Arda L, Terzioglu C. Microstructural and electrical characterizations of transparent Erdoped ZnO nano thin films prepared by sol–gel process. Journal of Materials Science-Materials in Electronics 2017; 28 (19): 14314-14322.
  • 11. Doğan N, Bingölbali A, Arda L. Preparation, structure and magnetic characterization of Ni doped ZnO nanoparticles. Journal of Magnetism and Magnetic Materials 2015; 373: 226-230.
  • 12. Claros M, Setka M, Jimenez YP, Vallejos S. AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials 2020; 10 (3): 471-487.
  • 13. Shaban M, Mohamed F, Abdallah S. Production and characterization of superhydrophobic and antibacterial coated fabrics utilizing ZnO nanocatalyst. Scientific Reports 2018; 8 (1): 1-15.
  • 14. Liu J, Ma J, Bao Y, Wang J, Tang H et al. Polyacrylate/surface-modified ZnO nanocomposite as film-forming agent for leather finishing. International Journal of Polymeric Materials and Polymeric Biomaterials 2014; 63 (16): 809-814.
  • 15. Sultan SM, Clark OD,Masaud TB, Fang Q, Gunn R et al. Remote plasma enhanced atomic layer deposition of ZnO for thin film electronic applications. Microelectronic Engineering 2012; 97: 162-165.
  • 16. Wang ZL. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004; 16: R829-R858.
  • 17. Patil SL, Pawar SG, Chougule MA, Raut BT, Godse PR et al. Structural, morphological, optical, and electrical properties of PANi-ZnO nanocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials 2012; 61 (11): 809-820.
  • 18. Kashyout AB, Soliman HMA, Hassan HS, Abousehly AM. Fabrication of ZnO and ZnO: Sb nanoparticles for gas sensor applications. Journal of Nanomaterials 2010; 20: 1-8.
  • 19. Eriksson J, Khranovskyy V, Söderlind F, Käll PO, Yakimova R et al. ZnO nanoparticles or ZnO films: a comparison of the gas sensing capabilities. Sensors and Actuators B: Chemical 2009; 137 (1): 94-102.
  • 20. Jońca J, Ryzhikov A, Kahn ML, Fajerwerg K, Chaudret B et al. Shape-controlled ZnO nanostructures for gas sensing applications. Procedia Engineering 2014; 87: 907-910.
  • 21. Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery 2010; 7 (9): 1063-1077.
  • 22. Sharma H, Kumar K, Choudhary C, Mishra PK, Vaidya B. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial Cells Nanomedicine and Biotechnology 2016; 44 (2): 672-679.
  • 23. Li Z, Yang R, Yu M, Bai F, Li C et al. Cellular level biocompatibility and biosafety of ZnO nanowires. Journal of Physical Chemistry C 2008; 112 (51): 20114-20117.
  • 24. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceramics International 2017; 43 (1): 907-914.
  • 25. Fielding G, Bose S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomaterialia 2013; 9 (11): 9137-9148.
  • 26. Shruti S, Salinas AJ, Lusvardi G, Malavasi G, Menabue L et al. Mesoporous bioactive scaffolds prepared with cerium-, gallium-and zinc-containing glasses. Acta Biomaterialia 2013; 9 (1): 4836-4844.
  • 27. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002; 18: 6679-6686.
  • 28. Fu G, Vary PS, Lin CT. Anatase TiO2 nanocomposites for antimicrobial coatings. Journal of Physical Chemistry B 2005; 109: 8889-8898.
  • 29. Chiari-Andreo BG, Abucafy MP, Manaia EB, Da Silva BL, Rissi NC et al. Drug delivery using theranostics: an Overview of its use, advantages and safety assessment. Current Nanoscience 2020; 16 (1): 3-14.
  • 30. Racca L, Canta M, Dumontel B, Ancona A, Limongi T et al. Zinc oxide nanostructures in biomedicine. Smart Nanoparticles for Biomedicine 2018; 171-187.
  • 31. Chmielnicka J, Sowa B. Cadmium interaction with essential metals (Zn, Cu, Fe), metabolism metallothionein, and ceruloplasmin in pregnant rats and fetuses. Ecotoxicology and Environmental Safety 1996; 35 (3): 277-281.
  • 32. Petering HG. Some observations on the interaction of zinc, copper, and iron metabolism in lead and cadmium toxicity. Environmental Health Perspectives 1978; 25:141-145.
  • 33. Maret W. Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. Preventive Nutrition and Food Science 2017; 22 (1):1-8.
  • 34. Soetan KO, Olaiya CO, Oyewole OE. The importance of mineral elements for humans, domestic animals and plants-a review. African Journal of Food Science 2010; 4 (5): 200-222.
  • 35. Prasad AS. Biochemistry of zinc. Berlin, Germany: Springer Science & Business Media, 2013.
  • 36. Hu CH, Xia MS. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Applied Clay Science 2006; 31 (3-4): 180-184.
  • 37. Dawlee S, Sugandhi A, Balakrishnan B, Labarre D, Jayakrishnan A. Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromolecules 2005; 6 (4): 2040-2048.
  • 38. Jeong H, Hwang J, Lee H, Hammond PT, Choi J et al. In vitro blood cell viability profiling of polymers used in molecular assembly. Scientific Reports 2017; 7 (1): 1-13.
  • 39. Siddiqi KS, Ur Rahman A, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 2018; 13 (1): 141-154.
  • 40. Zeng K, Li J, Zhang Z, Yan M, Liao Y et al. Lipid-coated ZnO nanoparticles as lymphatic-targeted drug carriers: study on cell-specific toxicity in vitro and lymphatic targeting in vivo. Journal of Materials Chemistry B 2015; 3 (26): 5249-5260.
  • 41. Ågren MS, Chvapil M, Franzén L. Enhancement of re-epithelialization with topical zinc oxide in porcine partialthickness wounds. Journal of Surgical Research 1991; 50 (2): 101-105.
  • 42. Nieder R, Benbi DK, Reichl FX. Medicinal uses of soil components, geophagia and podoconiosis. Soil Components and Human Health 2018; 35-97.
  • 43. Leslie TA, Greaves MW, Yosipovitch G. Current topical and systemic therapies for itch. Pharmacology of Itch 2015; 337-356.
  • 44. Xhauflaire-Uhoda E, Henry F, Pierard-Franchimont C, Piérard GE. Electrometric assessment of the effect of a zinc oxide paste in diaper dermatitis. International Journal of Cosmetic Science 2009; 31(5): 369-374.
  • 45. Zeng H. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Advanced Functional Materials 2010; 20: 561-572.
  • 46. Prasad R, Rattan G. Preparation methods and applications of CuO-CeO2 catalysts: a short review. Bulletin of Chemical Reaction Engineering & Catalysis 2010; 5: 7-30.
  • 47. Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia 2011; 7 (6): 2579-2584.
  • 48. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF et al. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 2006; 6: 866-870.
  • 49. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism. Environmental Science & Technology 2006; 40: 6151-6156.
  • 50. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters 2007; 90: 213902-213906.
  • 51. Zhang LL, JiangYH, Ding YL, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research 2007; 9: 479-489.
  • 52. Kasemets K, Ivask A, Dubourguier HC, Kahru A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology In Vitro 2009; 23 (6): 1116-1122.
  • 53. Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Science and Technology of Advanced Materials 2008; 9 (3): 035004-035011.
  • 54. Zhang L, Ding Y, Povey M, York D. ZnO nanofluids a potential antibacterial agent. Progress in Natural Science 2008; 18 (8): 939-944.
  • 55. Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 2014; 10: 1195-1208.
  • 56. Yoshida T. Leaching of zinc oxide in acidic solution. Materials Transactions 2003; 44 (12): 2489-2493.
  • 57. Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn 2+ dissolution inside lysosomes. Particle and Fibre Toxicology 2011; 8: 27-43.
  • 58. Colvin R, HolmesWR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2010; 2: 306-317.
  • 59. Bisht G, Rayamajhi S. ZnO nanoparticles: a promising anti-cancer agent. Nanobiomedicine 2015; 3: 1-11.
  • 60. Gordon T, Perlstein B, Houbara O, Felner I, Banin E et al. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloid Surface A 2011; 374 (1-3): 1-8.
  • 61. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A et al. ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Materials Chemistry and Physics 2010; 121 (1-2): 198-201.
  • 62. Sawai J, Shoji S, Igarashi H, Hashimoto A,Kokugan T et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. Journal of Fermentation and Bioengineering1998; 86(5): 521-522.
  • 63. Byamba D, Kim TG, Kim DH, Je JH, Lee MG. The roles of reactive oxygen species produced by contact allergens and irritants in monocyte-derived dendritic cells. Annals of Dermatology 2010; 22 (3): 269-278.
  • 64. Ali W, Ulla H, Zada A, Alamgir MK, Muhammad W et al. Effect of calcination temperature on the photoactivities of ZnO/SnO2 nanocomposites for the degradation of methyl orange. Materials Chemistry and Physics 2018; 213: 259-266.
  • 65. Bomila R, Suresh S, Srinivasan S. Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. Journal of Materials Science-Materials In Electronics 2019; 30 (1): 582-592.
  • 66. Phuruangrat A, Aon-on P, Thongtem T, Thongtem S. Synthesis and photocatalysis of Ag 3PO4 nanoparticles loaded on ZnO nanostructure flowers. Journal of the Australian Ceramic Society 2019; 1-6.
  • 67. Yalçın B, Erbil C. Effect of sodium hydroxide solution as polymerization solvent and activator on structural, mechanical and antibacterial properties of PNIPAAm and P (NIPAAm–clay) hydrogels. Polymer Composites 2018; 39: E386-E406.
  • 68. Su-Hua Y, Sheng-Yu H, Cheng-Hsun T. Growth mechanisms and characteristics of ZnO nano structures doped with In and Ga. Japanese Journal of Applied Physics 2010; 49: 1-8.
  • 69. Iqbal J, Jan T, Ismail M, Ahmad N, Arif A et al. Influence of Mg doping level on morphology, optical, electrical properties and antibacterial activity of ZnO nanostructures. Ceramics International 2014; 40 (5): 7487-7493.
  • 70. Stankic S, Suman S, Haque F, Vidic J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology 2016; 14 (1): 73-93.
  • 71. Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRB et al. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Research Letters 2018; 13: 229-242.
  • 72. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials 2001; 3 (7): 643-646.
  • 73. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Materials Science and Engineering C 2013; 33 (1): 91-98.
  • 74. Shen W, Li Z, Wang H, Liu Y, Guo Q et al. Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods. Journal of Hazardous Materials 2008; 152 (1): 172-175.
  • 75. Eskizeybek V, Sari F, Gulce H, Gulce A, Avci A. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations. Applied Catalysis B: Environmental 2012; 119: 197-206.
  • 76. Yayapao O, Thongtem T, Phuruangrat A, Thongtem S. Sonochemical synthesis of Dy-doped ZnO nanostructures and their photocatalytic properties. Journal of Alloys and Compounds 2013; 576: 72-79.
  • 77. Nair MG, Nirmala M, Rekha K, Anukaliani A. Structural, optical, photocatalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Materials Letters 2011; 65 (12): 1797-1800.
  • 78. Espitia PJP, Soares NDFF, Dos Reis Coimbra JS, De Andrade NJ, Cruz RS et al. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology 2012; 5 (5): 1447-1464.
  • 79. Ong CB, Ng LY, Mohammad AW. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews 2018; 81: 536-551.
  • 80. Rajamanickam D, Shanthi M. Photocatalytic degradation of an organic pollutant by zinc oxide – solar process. Arabian Journal of Chemistry 2016; 9 (S1): 858-868.
  • 81. Siwińska-Stefańska K, Kubiaka A, Piasecki A, Goscianska J, Nowaczyk G et al. TiO2 -ZnO binary oxide systems: comprehensive characterization and tests of photocatalytic activity. Materials 2018; 11 (5): 841-860.
  • 82. Zhu L, Li Y, Zeng W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Applied Surface Science 2018; 427: 281-287.
  • 83. Bazazi S, Arsalani N, Khataee A, Tabrizi AG. Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance. Journal of Industrial and Engineering Chemistry 2018; 62: 265-272.
  • 84. Wasly HS, El-Sadek MA, Henini M. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A 2018; 124 (1): 76-88.
  • 85. Liu Y, He L, Mustapha A, Li H, Hu ZQ et al. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology 2009; 107 (4): 1193-1201.
  • 86. Shirsekar PP, Kanhe N, Mathe VL, Lahir YK, Dongre PM. Interaction of zinc oxide nanoparticles with human red blood cells. Bionano Frontier 2016; 9 (1): 99-104.
  • 87. Auger S, Henry C, Péchoux C, Suman S, Lejal N et al. Exploring multiple effects of Zn 0.15 Mg 0.85 O nanoparticles on Bacillus subtilis and macrophages. Scientific Reports 2018; 8 (1): 12276-12290.
  • 88. Khan S, Faisal S, Shams DF, Zia M, Nadhman A. Photo-inactivation of bacteria in hospital effluent via thiolated iron-doped nanoceria. IET Nanobiotechnology 2019; 13 (8): 875-879.
  • 89. Fujihara J, Tongu M, Hashimoto H, Yamada T, Kimura-Kataoka K et al. Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice. The Journal of Medical Investigation 2015; 62 (1.2): 45-50.
  • 90. Tongu M, Hashimoto H, Yamada T, Kimura-Kataoka K, Yasuda T et al. Comparison of acute toxicity of ZnO and silica-coated ZnO nanoparticles in mice after single intravenous injection: preliminary experiment to apply to biological imaging. Shimane. Journal of Medical Science 2014; 31: 7-11.
  • 91. Ma D, Tu K, Zhang LM. Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromolecules 2010; 11 (9): 2204-2212.
  • 92. Iqbal G, Faisal S, Khan S, Shams DF, Nadhman A. Photo-inactivation and efflux pump inhibition of methicillin resistant Staphylococcus aureus using thiolated cobalt doped ZnO nanoparticles. Journal of Photochemistry and Photobiology B: Biology 2019; 192: 141-146.
  • 93. Romo LF, Cinoglu A, Moses D. 2019; U.S. Patent Application No. 16/454,385.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Sorption studies of europium on cerium phosphate using Box-Behnken design

Süleyman İNAN

Armagan GUNSEL, Ayse USLUOGLU, Ahmet Turgut BİLGİCLİ, Busra TOSUN, Gulnur ARABACİ, Meryem Nilufer YARASİR

Bestenur YALCİN, Dogan AKCAN, Ibrahim Ertugrul YALCİN, Mehmet Can ALPHAN, Kenan SENTURK, Ibrahim Ilker OZYİGİT, Lutfi ARDA

Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles

Aslıhan SÜMER

Voltammetric determination of itopride using carbon paste electrode modified with Gd doped $TiO_2$ nanotubes

Abdulaziz Nabil AMRO, Khadijah EMRAN, Hessah ALANAZI

Tahir SAVRAN, Abdurrahman KARAGOZ, Sukriye Nihan KARUK ELMAS, Duygu AYDİN, Furkan OZEN, Kenan KORAN, Fatma Nur ARSLAN, Ahmet Orhan GORGULU, Ibrahim YİLMAZ

A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis

Ayça ERGÜN, Serkan ACAR, Hacer Yeşim CENGİZ, Eymen KONYALI, Hüseyin DELİGÖZ

Priyamvada SHARMA, Riya SAİLANİ, Anita MEENA, Chandra Lata KHANDELWAL

An anthracene based fluorescent probe for the selective and sensitive detection of Chromium (III) ions in an aqueous medium and its practical application

Erman KARAKUŞ

Effect of Mg doping on morphology, photocatalytic activity and related biological properties of $Zn_{1−x}Mg_xO$ nanoparticles

İbrahim Ertuğrul YALÇIN, İbrahim İlker ÖZYİĞİT, Bestenur YALÇIN, Doğan AKCAN, Mehmet Can ALPHAN, Kenan ŞENTÜRK, Lütfi ARDA