A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis

A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis

This study deals with selective separation of mono- and divalent cations from aqueous salt solutions using polymeric films based on polyethylene (PE) and polyamide6 (PA6), and two different commercial nanofiltration (NF) membranes. The diffusion rates (D) of ions $(Na^{+} and Ca ^{2+{)$, separation factors (α) and ion rejections (R) of the films and NF membranes are examined comparatively as well as their surface morphology and hydrophilicity. It is observed that the diffusion rates of Na + are in the range of 0.7–1.8 × $10 ^{−8}cm^{2}.s ^{−1}$in the decreasing order of PE > NF90 > NF270 > PA6 while $Ca ^{2+}$ shows diffusion rates of $7.4–18.4 × 10 ^{−8} cm2.s ^{−1}$in the increasing order of NF270 > NF90≈ PA6 > PE. Rejection values of the polymeric films and NF membranes against to Na + and Ca 2+ vary between 90% and 99.6%.The highest α$(Ca ^{2+} /Na ^{+})$ is found to be 20 for PA6 film. D, α, and R value of both polymeric films and NF membranes are strongly affected by the existence of osmosis during diffusion-dialysis and the sizes of hydrated sodium and calcium ions. In conclusion, the film based on PA6 may be a good alternative for selective separation of mono- and divalent cations.

___

  • 1. Castro-Munoz R, Boczkaj G, Gontarek E, Cassano A, Fila V. Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food and Science Technology 2020; 95: 219-232. doi: 10.1016/j.tifs.2019.12.003
  • 2. Nazir A, Khan K, Maan A, Zia R, Giorno L et al. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food and Science Technology 2019; 86: 426-438. doi: 10.1016/j.tifs.2019.02.049
  • 3. Reis MHM, Madrona GS, Ferreira FB, Magalhaes FS, Bindes MMM. Membrane Filtration Processes for the Treatment of Nonalcoholic Beverages. Manaus, Brazil: Elsevier, 2019.
  • 4. Peyravi M, Jahanshahi M, Banafti S. Safety Issues in Beverage Production. Babol, Iran: Elsevier, 2020.
  • 5. Andrade LH, Aguiar AO, Pires WL, Grossi LB, Amaral MCS. Comprehensive bench- and pilot-scale investigation of NF for gold mining effluent treatment: membrane performance and fouling control strategies. Separation and Purification Technology 2017; 174: 44-56. doi: 10.1016/j.seppur.2016.09.048
  • 6. Meschke K, Hofmann R, Haseneder R, Repke JU. Membrane treatment of leached mining waste – a potential process chain for the separation of the strategic elements germanium and rhenium. Chemical Engineering Journal 2020; 380: 122476. doi: 10.1016/j.cej.2019.122476
  • 7. San Roman MF, Ortiz-Gandara I, Bringas E, Ibanez R, Ortiz I. Membrane selective recovery of HCl, zinc and iron from simulated mining effluents. Desalination 2018; 440: 78-87. doi: 10.1016/j.desal.2018.02.005
  • 8. Wang P, Wang M, Liu F, Ding S, Wang X. Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications 2018; 9: 1. doi: 10.1038/s41467-018-02941-6
  • 9. Cay-Durgun P, Lind ML. Nanoporous materials in polymeric membranes for desalination. Current Opinion in Chemical Engineering 2018; 20: 19-27. doi: 10.1016/j.coche.2018.01.001
  • 10. Homayoonfal M, Mehrnia MR, Mojtahedi YM, Ismail AF. Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: a comprehensive review. Desalination and Water Treatment 2013; 51: 3295-3316. doi: 10.1080/19443994.2012.749055
  • 11. Bet-Moushoul E, Mansourpanah Y, Farhadi K, Tabatabaei M. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chemical Engineering Journal 2016; 283: 29-46. doi: 10.1016/j.cej.2015.06.124
  • 12. Bassyouni M, Abdel-Aziz MH, Zoromba MS, Abdel-Hamid SMS, Dioli E. A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry 2019; 73: 19-46. doi: 10.1016/j.jiec.2019.01.045
  • 13. Wen Y, Yuan J, Ma X, Wang S, Liu Y. Polymeric nanocomposite membranes for water treatment: a review. Environmental Chemistry Letters 2019; 17: 1539-1551. doi: 10.1007/s10311-019-00895-9
  • 14. Xu GR, Wang SH, Zhao HL, Wu SB, Xu JM. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. Journal of Membrane Science 2015; 493: 428-443. doi: 10.1016/j.memsci.2015.06.038
  • 15. Decher G, Schlenoff JB. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. 2nd ed. Weinheim, Germany: Wiley-VCH, 2012.
  • 16. Hadj Lajimi R, Ferjani E, Roudesli MS, Deratani A. Effect of LbL surface modification on characteristics and performances of cellulose acetate nanofiltration membranes. Desalination 2011; 266: 78-86. doi: 10.1016/j.desal.2010.08.005
  • 17. Zhao Y, Li Y, Zhu J, Larranaga AL, Yuan S. Thin and robust organic solvent cation exchange membranes for ion separation. Journal of Materials Chemistry A 2019; 7: 13903-13909. doi: 10.1039/c9ta03550h
  • 18. Zerdoumi R, Chatta H, Mellahi D, Oulmi K, Ferhat M. Chronopotentiometric evaluation of enhanced counter-ion transport through anion exchange membranes in electromembrane processes. Desalination and Water Treatment 2017; 78: 34-40. doi: 10.5004/dwt.2017.20871
  • 19. Boutorabi L, Rajabi M, Bazregar M, Asghari. A Selective determination of chromium(VI) ions using in-tube electro-membrane extraction followed by flame atomic absorption spectrometry. Semnan, Iran: Elsevier B.V, 2017.
  • 20. Awasthi K, Kumar R, Saraswat VK, Kumar M, Awasthi K. Active block copolymer layer on carboxyl-functionalized PET film for hydrogen separation. International Journal of Hydrogen Energy 2019; 45 (37): 18676-18684. doi: 10.1016/j.ijhydene.2019.07.174
  • 21. Hartel G. Separation of a CO2 and H2 gas mixture using a high pressure polyethylene terephtalate membrane. Journal of Membrane Science 1996; 113: 115-120.
  • 22. Minelli M, Giacinti M, Hallinan DT, Balsara NP. Study of gas permeabilities through polystyrene- block -poly ( ethylene oxide ) copolymers. Journal of Membrane Science 2013; 432: 83-89. doi: 10.1016/j.memsci.2012.12.038
  • 23. Montes Luna A de J, Castruita de León G, García Rodríguez SP, Fuentes Lopez NC, Camacho OP et al. Na + /Ca 2+ aqueous ion exchange in natural clinoptilolite zeolite for polymer-zeolite composite membranes production and their $CH_4 /CO_2 /N_2$ separation performance. Journal of Natural Gas Science and Engineering 2018; 54: 47-53. doi: 10.1016/j.jngse.2018.03.007
  • 24. Xiang F, Marti AM, Hopkinson DP. Layer-by-layer assembled polymer/MOF membrane for H2 /CO2 separation. Journal of Membrane Science 2018; 556: 146-153. doi: 10.1016/j.memsci.2018.03.081
  • 25. Kumar S, Srivastava S, Vijay YK. Study of gas transport properties of multi-walled carbon nanotubes/polystyrene composite membranes. International Journal of Hydrogen Energy 2011; 37: 3914-3921. doi: 10.1016/j.ijhydene.2011.05.060
  • 26. Godínez-García A, Vallejo-Arenas DD, Salinas-Rodríguez E, Gomez-Torres SA, Ruiz JC. Spraying synthesis and ion diffusion in polyvinyl chloride/graphene oxide membranes. Applied Surface Science 2019; 489: 962-975. doi: 10.1016/j.apsusc.2019.05.319
  • 27. Ding J, Wu H, Wu P. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization. Journal of Membrane Science 2019; 598: 117658. doi: 10.1016/j.memsci.2019.117658
  • 28. Zeng L, Liu Q, Luo L, Liu L, Tang K. Enhancement mechanism of an improved liquid membrane using selective diffusion retardant for heavy metal ions separation. Chemical Engineering Science 2019; 201: 1-14. doi: 10.1016/j.ces.2019.02.017
  • 29. Shintani T, Akamatsu K, Hamada S, Nakagawa K, Matsuyama H et al. Preparation of monoamine-incorporated polyamide nanofiltration membranes by interfacial polymerization for efficient separation of divalent anions from divalent cations. Separation and Purification Technology 2020; 239: 116530. doi: 10.1016/j.seppur.2020.116530
  • 30. Nicolini JV, Borges CP, Ferraz HC. Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Separation and Purification Technology 2016; 171: 238-247. doi: 10.1016/j.seppur.2016.07.042
  • 31. Du Y, Zhang X, Yang J, Lv Y, Zhang Chao et al. Ultra-thin graphene oxide films via contra-diffusion method: fast fabrication for ion rejection. Journal of Membrane Science 2020; 595: 117586. doi: 10.1016/j.memsci.2019.117586
  • 32. Araki Y, Kobayashi Y, Kawaguchi T, Kaneko T, Arai N. Water diffusion in polymeric membranes: mechanism and synthetic strategy for water-inhibiting functional polymers. Journal of Membrane Science 2018; 564: 184-192. doi: 10.1016/j.memsci.2018.07.009
  • 33. Sum JY, Ahmad AL, Ooi BS. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. Journal of Industrial and Engineering Chemistry 2019; 76: 277-287. doi: 10.1016/j.jiec.2019.03.052
  • 34. Meschke K, Hansen N, Hofmann R, Haseneder R, Repke JU. Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes. Separation of Purification Technology 2020; 235: 116186. doi: 10.1016/j.seppur.2019.116186
  • 35. Cheng C, Li P, He Y, Hu X, Emmanuel K. Branched polyvinyl alcohol hybrid membrane for acid recovery via diffusion dialysis. Chemical Engineering and Technology 2019; 42: 1180-1187. doi: 10.1002/ceat.201800622
  • 36. Krasemann L, Tieke B. Composite membranes with ultrathin separation layer prepared by self-assembly of polyelectrolytes. Materials Science and Engineering 1999; 8-9: 513-518. doi: 10.1016/S0928-4931(99)00030-2
  • 37. Toutianoush A, El-Hashani A, Schnepf J, Tieke B. Multilayer membranes of p-sulfonato-calix [8] arene and polyvinylamine and their use for selective enrichment of rare earth metal ions. Applied Surface Science 2005; 246: 430-436. doi: 10.1016/j.apsusc.2004.11.048
  • 38. Pyrasch M, Toutianoush A, Jin W, Schnepf J, Tieke B. Self-assembled films of Prussian blue and analogues: optical and electrochemical properties and application as ion-sieving membranes. Chemistry of Materials 2003; 13: 245-254. doi: 10.1021/cm021230a
  • 39. Hoffmann K, El-Hashani A, Tieke B. Ion-selective membranes prepared upon layer-by-layer assembly of azamacrocycles and polyelectrolytes. Macromolecular Symposia 2010; 287: 22-31. doi: 10.1002/masy.201050104
  • 40. Liu Y, Wang X, Yang H, Xie YF, Xia H. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science 2019; 572: 152-160. doi: 10.1016/j.memsci.2018.11.013
  • 41. Kır E, Perçin Özkorucuklu S, Sardohan Köseoglu T, Karamızrak E. Removal of Cr(III) and Cu(II) using poly(2- chloroaniline)/polyvinylidene uoride composite cation-exchange membranes by Donnan dialysis. Turkish Journal of Chemistry 2013; 37: 195-203. doi: 10.3906/kim-1204-74
  • 42. Wen Q, Yan D, Liu F, Wang M, Ling Y et al. Highly selective ionic transport through subnanometer pores in polymer films. Advanced Functional Materials 2016; 26: 5796-5803. doi: 10.1002/adfm.201601689
  • 43. Mi B, Coronell O, Mariñas BJ, Watanabe F, Cahill DG et al. Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry. Journal of Membrane Science 2006; 282: 71-81. doi: 10.1016/j.memsci.2006.05.015
  • 44. Khorshidi B, Thundat T, Fleck BA, Sadrzadeh M. A novel approach toward fabrication of high performance thin film composite polyamide membranes. Scientific Reports 2016; 6: 1-10. doi: 10.1038/srep22069
  • 45. Deligöz H. Preparation of self-standing polyaniline-based membranes: doping effect on the selective ion separation and reverse osmosis properties. Journal of Applied Polymer Science 2007; 105 (5): 2640-2645. doi :10.1002/app.26377
  • 46. Aygen C, Balık S. Crustacea fauna of Işıklı Lake and Springs (Çivril, Denizli). Ege University Journal of Fisheries and Aquatic Sciences 2005; 22: 371-375 (in Turkish with an abstract in English). doi: 10.12714/egejfas.2005.22.3.5000156937
  • 47. Gümüşoğlu T, Arı GA, Deligöz H. Investigation of salt addition and acid treatment effects on the transport properties of ionically cross-linked polyelectrolyte complex membranes based on chitosan and polyacrylic acid. Journal of Membrane Science 2011; 376: 25-34. doi: 10.1016/j.memsci.2011.03.040
  • 48. Arslan M, Dönmez G, Ergün A, Okutan M, Arı GA et al. Preparation, characterization, and separation performances of novel surface modified LbL composite membranes from polyelectrolyte blends and MWCNT. Polymer Engineering and Science 2020; 60 (2): 341-351. doi: 10.1002/pen.25289
  • 49. Pei J, Zhang X, Huang L, Haifeng J, Xuejiao. Fabrication of reduced graphene oxide membranes for highly efficient water desalination. RSC Advances 2016; 6: 101948-101952. doi: 10.1039/c6ra22711b
  • 50. Feher J. Osmosis and osmotic pressure. Quantitative Human Physiology 2012; 141-152. doi: 10.1016/b978-0-12- 382163-8.00017-7
  • 51. Tanganov BB. About sizes of the hydrated salt ions-the components of sea water. European Journal of Natural History 2013; 1: 36-37.
  • 52. Yang ZH. The size and structure of selected hydrated ions and implications for ion channel selectivity. RSC Advances 2015; 5: 1213-1219. doi: 10.1039/c4ra10987b
  • 53. Tieke B, Krasemann L, Toutianoush A. Tailor-made membranes for alcohol/water pervaporation and ion separation prepared upon layer-by-layer adsorption of polyelectrolytes. Macromolecular Symposia 2001; 163: 97-111. doi: 10.1002/1521-3900(200101)
  • 54. Wang J, Wang Z, Liu Y, Wang J, Wang S. Surface modification of NF membrane with zwitterionic polymer to improve anti-biofouling property. Journal of Membrane Science 2016; 514: 407-417. doi: 10.1016/j.memsci.2016.05.014
  • 55. Licona KPM, De O Geaquinto LR, Nicolini JV, Figueiredo NG, Chiapetta SC et al. Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water. Journal of Water Process Engineering 2018; 25: 195-204. doi: 10.1016/j.jwpe.2018.08.002
  • 56. Azaïs A, Mendret J, Gassara S, Eddy P, Deratani A et al. Nanofiltration for wastewater reuse: counteractive effects of fouling and matrice on the rejection of pharmaceutical active compounds. Separation and Purification Technology 2014; 133: 313-327. doi: 10.1016/j.seppur.2014.07.007
  • 57. Wang Z, Xiao K, Wang X. Role of coexistence of negative and positive membrane surface charges in electrostatic effect for salt rejection by nanofiltration. Desalination 2018; 444: 75-83. doi: 10.1016/j.desal.2018.07.010
  • 58. Erbil HY. Surface Chemistry of Solid and Liquid Interfaces. Oxford, UK: Blackwell Publishing Ltd., 2008.
  • 59. Cho YH, Kim HW, Lee HD, Shin JE, Yoo BM et al. Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited. Journal of Membrane Science 2017; 544: 425-435. doi: 10.1016/j.memsci.2017.09.043
  • 60. Krieger G, Tieke B. Coordinative layer-by-layer assembly of thin films based on metal ion complexes of ligandsubstituted polystyrene copolymers and their use as separation membranes. Macromolecular Chemistry and Physics 2017; 218: 12-14. doi: 10.1002/macp.201700052