Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles

Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles

The physical and chemical properties of bimetallic nanoparticles can be optimized by tuning the particle composition. In this study, we identified CO adsorption and dissociation energetics on five Pt-Mo nanoparticles at different concentrations, the lowest energy $Pt_7 , Pt-6 Mo, Pt_5 Mo_2 , Pt_4 Mo_3 , and Mo_7$ clusters. We have shown that the CO adsorption and dissociation energies and preferred CO adsorption sites are largely dependent on the composition of the nanoparticles. As the Mo concentration increases, the strength of the C-O internal bond in the adsorption complex decreases, as indicated by a decrease in the C-O stretching frequency. Also, more Mo sites in the nanoparticle become available for CO adsorption, and the preferred CO adsorption site switches from Pt to Mo. For these reasons, dissociation of CO is energetically favorable on $Pt_4 Mo_3 and Mo_7$. On both compositions, we have shown that the dissociation paths begin with CO adsorbed on a Mo site in a multifold configuration, in particular in a tilted configuration. These findings provide insight on the effects of the composition on the chemical and catalytical properties of Pt-Mo nanoparticles, thereby guiding future experiments on the synthesis of nanoparticles, especially those that may be suitable for various desired applications containing CO

___

  • 1. Aiken JD, Finke RG. A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis. Journal of Molecular Catalysis A: Chemical 1999; 145 (1-2): 1-44. doi: 10.1016/s1381- 1169(99)00098-9
  • 2. Santos CS, Gabriel B, Blanchy M, Menes O, García D et al. Industrial applications of nanoparticles–a prospective overview. Materials Today: Proceedings 2015; 2 (1): 456-465. doi: 10.13140/2.1.5100.6726
  • 3. McNamara K, Tofail SA. Nanoparticles in biomedical applications. Advances in Physics: X 2017; 2 (1): 54-88. doi: 10.1080/23746149.2016.1254570
  • 4. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews 2018; 118 (10): 4981-5079. doi: 10.1021/acs.chemrev.7b00776
  • 5. Stoddart A. Nanoparticle surfactants: active assemblies. Nature Reviews Materials 2018; 3 (2): 1-1. doi: doi.org/10.1038/natrevmats.2018.6
  • 6. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews 2008; 108 (3): 845-910. doi: 10.1021/cr040090g
  • 7. Jellinek J. Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discussions 2008; 138: 11-35. doi: 10.1039/b800086g
  • 8. Grassian VH. When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. The Journal of Physical Chemistry C 2008; 112 (47): 18303- 18313. doi: 10.1021/jp806073t
  • 9. Du Y, Sheng H, Astruc D, Zhu M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chemical Reviews 2020; 120 (2): 526-622. doi: 10.1021/acs.chemrev.8b00726
  • 10. Suo C, Zhang W, Shi X, Ma C. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties. AIP Advances 2014; 4 (3): 031340. doi: 10.1063/1.4869617
  • 11. Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y. Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochemistry Communications 2002; 4 (5): 442-446. doi: 10.1016/S1388-2481(02)00341-7
  • 12. Ugalde-Reyes O, Hernández-Maya R, Ocampo-Flores AL, Alvarez-Ramírez F, Sosa-Hernández E et al. Study of the electrochemical activities of Mo-modified Pt catalysts, for application as anodes in direct methanol fuel cells: effect of the aggregation route. Journal of The Electrochemical Society 2015; 162 (3): H132-141. doi: 10.1149/2.0521503jes
  • 13. Crabb EM, Ravikumar MK, Qian Y, Russell AE, Maniguet S et al. Controlled modification of carbon supported platinum electrocatalysts by Mo. Electrochemical and Solid State Letters 2002; 5 (1): A5-A9.
  • 14. Linsebigler A, Lu G, Yates Jr JT. The bimetallic Pt/Mo (110) surface: structural and CO chemisorption studies. Surface Science 1993; 294 (3): 284-296. doi: 10.1016/0039-6028(93)90115-Z
  • 15. Shubina TE, Koper MT. Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces. Electrochimica Acta 2002; 47 (22-23): 3621-3628. doi: 10.1016/S0013-4686(02)00332-8
  • 16. Heiz U, Sanchez A, Abbet S, Schneider WD. The reactivity of gold and platinum metals in their cluster phase. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 1999; 9: 35-39. doi: 10.1007/s100530050395
  • 17. Gruene P, Fielicke A, Meijer G, Rayner DM. The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Physical Chemistry Chemical Physics 2008; 10 (40): 6144-6149. doi: 10.1039/B808341J
  • 18. Ferrari P, Vanbuel J, Tam NM, Nguyen MT, Gewinner S et al. Effects of charge transfer on the adsorption of CO on small molybdenum-doped platinum clusters. Chemistry–A European Journal 2017; 23 (17): 4120-4127. doi: 10.1002/chem.201604894
  • 19. Li R, Odunlami M, Carbonnière P. Low-lying Ptn cluster structures (n= 6–10) from global optimizations based on DFT potential energy surfaces: sensitivity of the chemical ordering with the functional. Computational and Theoretical Chemistry 2017; 1107: 136-141. doi: 10.1016/j.comptc.2017.02.010
  • 20. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP et al. NWChem: a comprehensive and scalable opensource solution for large scale molecular simulations. Computer Physics Communications 2010; 181 (9): 1477-1489. doi: 10.1016/j.cpc.2010.04.018
  • 21. Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 1992; 45 (23): 13244-13249. doi: 10.1103/physrevb.45.13244
  • 22. Peterson KA, Figgen D, Dolg M, Stoll H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4 d elements Y–Pd. The Journal of Chemical Physics 2007; 126 (12): 124101. doi: 10.1063/1.2647019
  • 23. Figgen D, Peterson KA, Dolg M, Stoll H. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5 d elements Hf–Pt. The Journal of Chemical Physics 2009; 130 (16): 164108. doi: 10.1063/1.3119665
  • 24. Doye JP, Wales DJ. Surveying a potential energy surface by eigenvector-following. Zeitschrift für Physik D Atoms, Molecules and Clusters 1997; 40 (1): 194-197. doi: 10.1007/s004600050192
  • 25. Hopkins JB, Langridge-Smith PR, Morse MD, Smalley RE. Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2. The Journal of Chemical Physics 1983; 78 (4): 1627-1637. doi: 10.1063/1.444961
  • 26. Efremov YM, Samoilova AN, Kozhukhovsky VB, Gurvich LV. On the electronic spectrum of the Mo2 molecule observed after flash photolysis of Mo(CO)6. Journal of Molecular Spectroscopy 1978; 73 (3): 430-440. doi: 10.1016/0022-2852(78)90109-1
  • 27. Morse MD. Clusters of transition-metal atoms. Chemical Reviews 1986; 86 (6): 1049-1109. doi: 10.1021/cr00076a005
  • 28. Rauh EG, Ackermann RJ. The first ionization potentials of the transition metals. The Journal of Chemical Physics 1979; 70 (2): 1004-1007. doi: 10.1063/1.437531
  • 29. Simard B, Lebeault-Dorget MA, Marijnissen A, Ter Meulen JJ. Photoionization spectroscopy of dichromium and dimolybdenum: ionization potentials and bond energies. The Journal of Chemical Physics 1998; 108 (23): 9668- 9674. doi: 10.1063/1.476442
  • 30. Feigerle CS, Corderman RR, Bobashev SV, Lineberger WC. Binding energies and structure of transition metal negative ions. The Journal of Chemical Physics 1981; 74 (3): 1580-1598. doi: 10.1063/1.441289
  • 31. Airola MB, Morse MD. Rotationally resolved spectroscopy of Pt2. The Journal of Chemical Physics 2002; 116 (4): 1313-1317. doi: 10.1063/1.1428753
  • 32. Taylor S, Lemire GW, Hamrick YM, Fu Z, Morse MD. Resonant two-photon ionization spectroscopy of jet-cooled Pt2. The Journal of Chemical Physics 1988; 89 (9): 5517-5523. doi: 10.1063/1.455577
  • 33. Gupta SK, Nappi BM, Gingerich KA. Mass spectrometric study of the stabilities of the gaseous molecules diatomic platinum and platinum-yttrium. Inorganic Chemistry 1981; 20 (4): 966-969. doi: 10.1021/ic50218a004
  • 34. Fabbi JC, Langenberg JD, Costello QD, Morse MD, Karlsson L. Dispersed fluorescence spectroscopy of jet-cooled AgAu and Pt2. The Journal of Chemical Physics 2001; 115 (16): 7543-7549. doi: 10.1063/1.1407273
  • 35. Marijnissen A, Ter Meulen JJ, Hackett PA, Simard B. First ionization potential of platinum by mass-selected double-resonance field-ionization spectroscopy. Physical Review A 1995; 52 (4): 2606-2610. doi: 10.1103/physreva.52.2606
  • 36. Gibson ND, Davies BJ, Larson DJ. The electron affinity of platinum. The Journal of Chemical Physics 1993; 98 (6): 5104-5105. doi: 10.1063/1.464935
  • 37. Bilodeau RC, Scheer M, Haugen HK, Brooks RL. Near-threshold laser spectroscopy of iridium and platinum negative ions: electron affinities and the threshold law. Physical Review A 1999; 61 (1): 012505. doi: 10.1103/PhysRevA.61.012505
  • 38. Ho J, Polak ML, Ervin KM, Lineberger WC. Photoelectron spectroscopy of nickel group dimers: Ni-2, Pd-2, and Pt-2. The Journal of Chemical Physics 1993; 99 (11): 8542-8551. doi: 10.1063/1.465577
  • 39. Aprà E, Fortunelli A. Density-functional study of Pt13 and Pt55 cuboctahedral clusters. Journal of Molecular Structure: THEOCHEM 2000; 501: 251-259. doi: 10.1016/S0166-1280(99)00436-4
  • 40. Du J, Sun X, Wang H. The confirmation of accurate combination of functional and basis set for transition-metal dimers: Fe2, Co2, Ni2, Ru2, Rh2, Pd2, Os2, Ir2, and Pt2. International Journal of Quantum Chemistry 2008; 108 (9): 1505-1517. doi: 10.1002/qua.21684
  • 41. Huber KP. Molecular spectra and molecular structure: IV. Constants of diatomic molecules. New York, USA: Springer Science & Business Media; 2013.
  • 42. Goymour CG, King DA. Chemisorption of carbon monoxide on tungsten. Part 2.—Lateral interaction model for desorption kinetics. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1973; 69: 749-760. doi: 10.1039/F19736900749
  • 43. Erman P, Karawajczyk A, Rachlew-Källne E, Strömholm C, Larsson J et al. Direct determination of the ionization potential of CO by resonantly enhanced multiphoton ionization mass spectroscopy. Chemical Physics Letters 1993; 215 (1-3): 173-178. doi: 10.1016/0009-2614(93)89283-N
  • 44. Hossain E, Jarrold CC. Electronic structure of coordinatively unsaturated molybdenum and molybdenum oxide carbonyls. The Journal of Chemical Physics 2009; 130 (6): 064301. doi: 10.1063/1.3073855
  • 45. Lewis KE, Golden DM, Smith GP. Organometallic bond dissociation energies: laser pyrolysis of iron pentacarbonyl, chromium hexacarbonyl, molybdenum hexacarbonyl, and tungsten hexacarbonyl. Journal of the American Chemical Society 1984; 106 (14): 3905-3912. doi: 10.1021/ja00326a004
  • 46. Michels GD, Flesch GD, Svec HJ. Comparative mass spectrometry of the Group 6B hexacarbonyls and pentacarbonyl thiocarbonyls. Inorganic Chemistry 1980; 19 (2): 479-485. doi: 10.1021/ic50204a039
  • 47. Manceron L, Tremblay B, Alikhani ME. Vibrational spectra of PtCO and Pt (CO) 2 isolated in solid argon: Trends in unsaturated group 10 metal carbonyl molecules. The Journal of Physical Chemistry A 2000; 104 (16): 3750-3758. doi: 10.1021/jp9938819
  • 48. Roszak S, Balasubramanian K. A theoretical study of bridged vs atop interactions of Pt2 with CO. The Journal of Chemical Physics 1995; 103 (3): 1043-1049. doi: 10.1063/1.469814
  • 49. Chaves AS, Rondina GG, Piotrowski MJ, Tereshchuk P, Da Silva JL. The role of charge states in the atomic structure of Cu n and Pt n (n= 2–14 atoms) clusters: a DFT investigation. The Journal of Physical Chemistry A 2014; 118 (45): 10813-10821. doi: 10.1021/jp508220h
  • 50. Kumar V, Kawazoe Y. Evolution of atomic and electronic structure of Pt clusters: planar, layered, pyramidal, cage, cubic, and octahedral growth. Physical Review B 2008; 77 (20): 205418. doi: 10.1103/PhysRevB.77.205418
  • 51. Isomura N, Wu X, Watanabe Y. Atomic-resolution imaging of size-selected platinum clusters on TiO 2 (110) surfaces. The Journal of Chemical Physics 2009; 131 (16): 164707. doi: 10.1063/1.3251786
  • 52. Zhang W, Ran X, Zhao H, Wang L. The nonmetallicity of molybdenum clusters. The Journal of Chemical Physics 2004; 121 (16): 7717-7724. doi: 10.1063/1.1790911
  • 53. Ziane M, Amitouche F, Bouarab S, Vega A. Density functional study of the structural, electronic, and magnetic properties of Mo n and Mo n S (n= 1− 10) clusters. Journal of Nanoparticle Research 2017; 19 (12): 380. doi: 10.1007/s11051-017-4072-7
  • 54. Min BJ. Study of the electronic and the structural properties of small molybdenum clusters via projector augmented wave pseudopotential calculations. Journal of the Korean Physical Society 2015; 66 (2): 209-213. doi: 10.3938/jkps.66.209
  • 55. Zaera F, Kollin E, Gland JL. Observation of an unusually low C-O stretching frequency: CO chemisorption on a Mo (100) surface. Chemical Physics Letters 1985; 121 (4-5): 464-468. doi: 10.1016/0009-2614(85)87214-6
  • 56. Fulmer JP, Zaera F, Tysoe WT. The orientation and bonding of CO on Mo (100) using angle-resolved photoelectron spectroscopy and near-edge x-ray absorption fine structure. The Journal of Chemical Physics 1987; 87 (12): 7265- 7271. doi: 10.1063/1.453372
  • 57. Colaianni ML, Chen JG, Weinberg WH, Yates Jr JT. The adsorption and dissociation of carbon monoxide on clean and oxygen-modified molybdenum (110) surfaces. Journal of the American Chemical Society 1992; 114 (10): 3735-3743. doi: 10.1021/ja00036a024
  • 58. Scheijen FJ, Niemantsverdriet JW, Ferré DC. Density functional theory study of CO adsorption and dissociation on molybdenum (100). The Journal of Physical Chemistry C 2007; 111 (36): 13473-13480. doi: 10.1021/jp072673a
  • 59. Tian X, Wang T, Jiao H. Mechanism of coverage dependent CO adsorption and dissociation on the Mo (100) surface. Physical Chemistry Chemical Physics 2017; 19 (3): 2186-2192. doi: 10.1039/C6CP08129K
  • 60. Lordeiro RA, Guimaraes FF, Belchior JC, Johnston RL. Determination of main structural compositions of nanoalloy clusters of CuxAuy (x+ y≤ 30) using a genetic algorithm approach. International Journal of Quantum Chemistry 2003; 95 (2): 112-125. doi: 10.1002/qua.10660
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The use of water-soluble phthalocyanines as textile dyes in nylon/elastane fabric: fastness and antibacterial effectiveness

Armağan GÜNSEL, Ayşe USLUOĞLU, Ahmet Turgut BİLGİÇLİ, Büşra TOSUN, Gülnur ARABACI, Meryem Nilüfer YARAŞIR

Evaluation of a novel nanocrystalline hydroxyapatite powder and a solid hydroxyapatite/Chitosan-Gelatin bioceramic for scaffold preparation used as a bone substitute material

Sharmin RAHMAN, Kazi Hanium MARIA, Mohammad Saif ISHTIAQUE, Arijun NAHAR, Harinarayan DAS, Sheikh Manjura HOQUE

Priyamvada SHARMA, Riya SAİLANİ, Anita MEENA, Chandra Lata KHANDELWAL

Modeling and optimization of simultaneous degradation of rhodamine B and acid red 14 binary solution by homogeneous Fenton reaction: a chemometrics approach

Pezhman ZOLFAGHARI, Nasrin ALIASGHARLOU, Naimeh MOHSENI, Morteza BAHRAM

Bestenur YALCİN, Dogan AKCAN, Ibrahim Ertugrul YALCİN, Mehmet Can ALPHAN, Kenan SENTURK, Ibrahim Ilker OZYİGİT, Lutfi ARDA

Preparation, characterization, and binding profile of imprinted semi-IPN cryogel composite for aluminum

Adil DENİZLİ, Tahira QURESHİ, Shahnila SHAH, Huma SHAİKH, Najma MEMON, Muhammad Iqbal BHANGER, Humaira KHAN

Khamis Nassor ALLY, Leyla OZTURK, Mahmut KOSE

Aslihan SUMER

Nilsen SUNTER EROGLU, Suat CANOGLU, Metin YUKSEK

A comparative study on the monovalent and divalent cation separation of polymeric films and membranes from salt solutions under diffusion-dialysis

Ayça ERGÜN, Serkan ACAR, Hacer Yeşim CENGİZ, Eymen KONYALI, Hüseyin DELİGÖZ