Sorption studies of europium on cerium phosphate using Box-Behnken design

Sorption studies of europium on cerium phosphate using Box-Behnken design

Amorphous cerium phosphate was prepared and characterized. Three-level Box-Behnken design (BBD) was employed to analyze the effect of process variables such as initial pH (2–6), contact time (60–180 min), and sorbent amount (0.05–0.15 g) on the sorption capacity of europium. Analysis of variance (ANOVA) revealed that the main effect of initial pH and sorbent amount has a substantial impact on the sorption of Eu(III). Probability F-value $(F = 3 × 10^{−3})$ and correlation coefficient $(R^2 = 0.97)$ point out that the model is in good accordance with experimental data. The maximum sorption capacity of Eu(III) was found to be 42.14 $mg g ^{−1}$ at initial pH 6, contact time of 180 min, and a sorbent amount of 0.05 g. Sorption isotherm data was well explained by the Langmuir model and monolayer Eu(III) sorption capacity was obtained as 30.40 $mg g ^{−1}$. Kinetic data were well described by the pseudo-second-order model. Thermodynamic data suggested that the process is endothermic and spontaneous.

___

  • 1. Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Safety and Health at Work 2013; 4 (1): 12-26. doi: 10.5491/SHAW.2013.4.1.12
  • 2. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang YX et al. Recycling of rare earths: a critical review. Journal of Cleaner Production 2013; 51: 1-22. doi: 10.1016/j.jclepro.2012.12.037
  • 3. Furuhashi Y, Honda R, Noguchi M, Hara-Yamamura H, Kobayashi S et al. Optimum conditions of pH, temperature and preculture for biosorption of europium by microalgae Acutodesmus acuminatus. Biochemical Engineering Journal 2019; 143: 58-64. doi: 10.1016/j.bej.2018.12.007
  • 4. Hassan HS, Madcour WE, Elmaghraby EK. Removal of radioactive cesium and europium from aqueous solutions using activated $Al_2 O_3$ prepared by solution combustion. Materials Chemistry and Physics 2019; 234: 55-66. doi: 10.1016/j.matchemphys.2019.05.081
  • 5. Li M, Liu H, Chen T, Hayat T, Alharbi NS et al. Adsorption of europium on Al-substituted goethite. Journal of Molecular Liquids, 2017; 236: 445-451. doi: 10.1016/j.molliq.2017.04.046
  • 6. Mansy MS, Hassan RS, Selim YT, Kenawy SH. Evaluation of synthetic aluminum silicate modified by magnesia for the removal $of ^{137{ Cs, ^{60} Co and ^{152 + 154}Eu$ from low-level radioactive waste. Applied Radiation and Isotopes 2017; 130: 198-205. doi: 10.1016/j.apradiso.2017.09.042
  • 7. Hamza MF, Roux J-C, Guibal E. Uranium and europium sorption on amidoxime-functionalized magnetic chitosan micro-particles. Chemical Engineering Journal 2018; 344: 124-137. doi: 10.1016/j.cej.2018.03.029
  • 8. Verma PK, Semenkova AS, Krupskaya VV, Zakusin SV, Mohapatra PK et al. Eu(III) sorption onto various montmorillonites: experiments and modeling. Applied Clay Science 2019; 175: 22-29. doi: 10.1016/j.clay.2019.03.001
  • 9. Sofronov D, Krasnopyorova A, Efimova N, Oreshina A, Bryleva E et al. Extraction of radionuclides of cerium, europium, cobalt and strontium with $Mn_3 O_4 , MnO_2$, and MNOOH sorbents. Process Safety and Environmental Protection 2019; 125: 157-163. doi: 10.1016/j.psep.2019.03.013
  • 10. Diniz V, Volesky B. Biosorption of La, Eu and Yb using Sargassum biomass. Water Research 2005; 39 (1): 239-247. doi: 10.1016/j.watres.2004.09.009
  • 11. Apsara AP, Beena B. Ion exchange properties of synthesized cerium (IV) phosphate. Research Journal of Chemical and Environmental Sciences 2014; 2 (1): 18-23.
  • 12. El-Kamash AM, El-Gammal B, El-Sayed AA. Preparation and evaluation of cerium(IV) tungstate powder as inorganic exchanger in sorption of cobalt and europium ions from aqueous solutions. Journal of Hazardous Materials 2007; 141: 719-728. doi: 10.1016/j.jhazmat.2006.07.041
  • 13. Kapnisti MG, Noli FG, Papastergiadis ES, Pavlidou EG. Exploration of the parameters affecting the europium removal from aqueous solutions by novel synthesized titanium phosphates. Journal of Environmental Chemical Engineering 2018; 6: 3408-3417. doi: 10.1016/j.jece.2018.05.010
  • 14. Garcia-Glez J, Trobajo C, Khainakov SA, Amghouz Z. α-Titanium phosphate intercalated with propylamine: an alternative pathway for efficient europium(III) uptake into layered tetravalent metal phosphates. Arabian Journal of Chemistry 2017; 10 (6): 885-894. doi: 10.1016/j.arabjc.2016.07.013
  • 15. Metwally SS, El-Gammal B, Aly HF, Abo-El-Enein SA. Removal and separation of some radionuclides by polyacrylamide based Ce(IV) phosphate from radioactive waste solutions. Separation Science and Technology 2011; 46: 1808-1821. doi: 10.1080/01496395.2011.572328
  • 16. El-Gammal B, Shady SA. Chromatographic separation of sodium, cobalt and europium on the particles of zirconium molybdate and zirconium silicate ion exchangers. Chemical Engineering Journal 2018; 344: 124-137. doi: 10.1016/j.colsurfa.2006.02.068
  • 17. Verma S, Bamzai KK. Preparation of cerium orthophosphate nanosphere by coprecipitation route and its structural, thermal, optical, and electrical characterization. Journal of Nanoparticles 2014; 2014: 1-12. doi: 10.1155/2014/125360
  • 18. Masui T, Hirai H, Imanaka N, Adachi G. Characterization and thermal behavior of amorphous cerium phosphate. Physica Status Solidi A 2003; 198 (2): 364-368. doi: 10.1002/pssa.200306623
  • 19. Wenwei W, Yanjin F, Xuehang W, Sen L, Xiufu H et al. Preparation of nano-sized cerium and titanium pyrophosphates via solid-state reaction at room temperature. Rare Metals 2009; 28 (1): 33-38. doi: 10.1007/s12598-009- 0007-5
  • 20. Nilchi A, Ghannadi Maragheh M, Khanchi AR. Properties, ion-exchange behavior, and analytical applications of cerium phosphate cation exchangers suitable for column use. Separation Science and Technology 1999; 34 (9): 1833-1843. doi: 10.1081/SS-100100741
  • 21. Hanna AA, Mousa SM, Elkomy GM, Sherief MA. Synthesis and microstructure studies of nano-sized cerium phosphates. European Journal of Chemistry 2010; 1 (3): 211-215. doi: 10.5155/eurjchem.1.3.211-215.69
  • 22. Box GEP, Draper NR. Empirical Model-Building and Response Surfaces. New York, NY, USA: Wiley, 1987.
  • 23. Gunaraj V, Murugan N. Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes. Journal of Materials Processing Technology 1999; 88: 266-275.
  • 24. Montgomery DC. Design and Analysis of Experiments. Hoboken, NJ, USA: John Wiley & Sons, 2001.
  • 25. Sivaiah MV, Venkatesan KA, Krishna RM, Sasidhar P, Murthy GS. Ion exchange studies of europium on uranium antimonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004; 236: 147-157. doi: 10.1016/j.colsurfa.2004.02.006
  • 26. Bo L, Liya S, Xiaozhen L, Shuihe Z, Yumei Z et al. Sol-gel synthesis of monazite-type cerous phosphate for fiber coating. Journal of Materials Science Letters 2001; 20: 1071-1075. doi: 10.1023/A:1010985130019
  • 27. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R et al. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. Journal of Saudi Chemical Society 2015; 16 (6): 603-615. doi: 10.1016/j.jscs.2012.03.003
  • 28. Carmona MER, Silva MAP, Leite SGF. Biosorption of chromium using factorial experimental design. Process Biochemistry 2005; 40: 779-788. doi: 10.1016/j.procbio.2004.02.024
  • 29. İnan S, Altaş Y. Preparation of zirconium–manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental design. Chemical Engineering Journal 2011; 168: 1263-1271. doi: 10.1016/j.cej.2011.02.038
  • 30. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society 1918; 40: 1361-1403.
  • 31. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal 2010; 156: 2-10. doi: 10.1016/j.cej.2009.09.013
  • 32. Freundlich HMF. Over the adsorption in solution. The Journal of Physical Chemistry 1906; 57: 385-471.
  • 33. Dubinin LV, Zaverina MM, Radushkevich ED. Sorption and structure of active carbons I. Adsorption of organic vapors. Zhurnal Fizicheskoi Khimii 1947; 21: 1351-1362.
  • 34. Borai EH, Attallah MF, Elgazzar AH, El-Tabl AS. Isotherm and kinetic sorption of some lanthanides and iron from aqueous solution by aluminum silicotitante exchanger. Particulate Science and Technology 2019; 37: 410-422. doi: 10.1080/02726351.2017.1385550
  • 35. Misaelides P, Sarri S, Zamboulis D, Gallios G, Zhuravlev I et al. Separation of europium from aqueous solutions using $Al ^{3+} - and Fe ^{3+} - doped$ zirconium and titanium phosphates. Journal of Radioanalytical and Nuclear Chemistry 2006; 268: 53-58. doi: 10.1007/s10967-006-0123-8
  • 36. Nayak AK, Pal A. Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling. Journal of Environmental Management 2017; 200: 145-159. doi: 10.1016/j.jenvman.2017.05.045
  • 37. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF. Preparation of activated carbon from a renewable bioplant of Euphorbia rigida by $H_2 SO_4$ activation and its adsorption behavior in aqueous solutions. Applied Surface Science 2007; 253: 4843-4852. doi: 10.1016/j.apsusc.2006.10.053
  • 38. Lagergren S. About the theory of so-called adsorption of solution substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898; 24: 147-156.
  • 39. Ho YS, Mckay G. Sorption of lead(II) ions on peat. Water Research 1999; 33: 578-584. doi: 10.1016/S0043- 1354(98)00207-3
  • 40. Mahajan G, Sud D. Kinetics and equilibrium studies of Cr(VI) metal ion remediation by Arachis hypogea shell: a green approach. Bioresource Technology 2011; 6: 3324-3338. doi: 10.15376/biores.6.3.3324-3338