An anthracene based fluorescent probe for the selective and sensitive detection of Chromium (III) ions in an aqueous medium and its practical application

An anthracene based fluorescent probe for the selective and sensitive detection of Chromium (III) ions in an aqueous medium and its practical application

An anthracene based fluorescent probe, integrated with thiophene moiety, exhibited selective and sensitive detection of chromium (III) ions over other metal ions. Its synthesis was achieved by simple mixing of two commercially available compounds, 2-aminoanthracene, and 2-thiophenecarboxaldehyde, in onestep without the needed complex purification process. The probe molecule (ANT-Th) offered exceptional features such as “turn-on” fluorescence response, low detection limit (0.4 µM), and fast response time (

___

  • 1. Gómez V, Callao MP. Chromium determination and speciation since 2000. TrAC Trends in Analytical Chemistry 2006; 25 (10): 1006-1015. doi: 10.1016/j.trac.2006.06.010
  • 2. Heer M, Egert S. Nutrients other than carbohydrates: their effects on glucose homeostasis in humans. Diabetes/Metabolism Research and Reviews 2015; 31 (1): 14-35. doi: 10.1002/dmrr.2533
  • 3. Terpiłowska S, Siwicki AK. Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses. BioMetals 2017; 30 (4): 565-574. doi: 10.1007/s10534-017-0027-9
  • 4. Mertz W, Schwarz K. Impaired intravenous glucose tolerance as an early sign of dietary necrotic liver degeneration. Archives of Biochemistry and Biophysics 1955; 58 (2): 504-506. doi: 10.1016/0003-9861(55)90151-X
  • 5. Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi H-A. A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. Journal of Biological Chemistry 2000; 275 (14): 1050-1053. doi: 10.1074/JBC.275.14.10150
  • 6. Cervantes C, Campos-Garcıìa J, Devars S, Gutiérrez-Corona F, Loza-Tavera H et al. Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews 2001; 25 (3): 335-347. doi: 10.1016/S0168-6445(01)00057- 2
  • 7. Raspor P, Batič M, Jamnik P, Josić D, Milačič R et al. The influence of chromium compounds on yeast physiology. Acta Microbiologica et Immunologica Hungarica 2000; 47 (2-3): 143-173. doi: 0.1556/AMicr.47.2000.2-3.2
  • 8. Kumar AR, Riyazuddin P. Comparative study of analytical methods for the determination of chromium in groundwater samples containing iron. Microchemical Journal 2009; 93 (2): 236-241. doi: 10.1016/j.microc.2009.07.012
  • 9. Marqués MJ, Salvador A, Morales-Rubio A, De la Guardia M. Chromium speciation in liquid matrices: a survey of the literature. Fresenius’ Journal of Analytical Chemistry 2000; 367 (7): 601-613. doi: 10.1007/s002160000422
  • 10. Wang L-L, Wang J-Q, Zheng Z-X, Xiao P. Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(III) and chromium(VI) in environmental sediment samples. Journal of Hazardous Materials 2010; 177 (1): 114-118. doi: 10.1016/j.jhazmat.2009.12.003
  • 11. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J et al. Fluorescent chemosensors: the past, present and future. Chemical Society Reviews 2017; 46 (23): 7105-7123. doi: 10.1039/C7CS00240H
  • 12. Kaur B, Kaur N, Kumar S. Colorimetric metal ion sensors – a comprehensive review of the years 2011-2016. Coordination Chemistry Reviews 2018; 358: 13-69. doi: 10.1016/j.ccr.2017.12.002
  • 13. Zhu H, Fan J, Wang B, Peng X. Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chemical Society Reviews 2015; 44 (13): 4337-4366. doi: 10.1039/C4CS00285G
  • 14. Park S-H, Kwon N, Lee J-H, Yoon J, Shin I. Synthetic ratiometric fluorescent probes for detection of ions. Chemical Society Reviews 2020; 49 (1): 143-179. doi: 10.1039/C9CS00243J
  • 15. Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews 2015; 44 (13): 4185-4191. doi: 10.1039/C4CS00280F
  • 16. Wu D, Chen L, Lee W, Ko G, Yin J et al. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coordination Chemistry Reviews 2018; 354: 74-97. doi: 10.1016/j.ccr.2017.06.011
  • 17. Huang K, Yang H, Zhou Z, Yu M, Li F et al. Multisignal chemosensor for Cr 3+ and its application in bioimaging. Organic Letters 2008; 10 (12): 2557-2560. doi: 10.1021/ol800778a
  • 18. Zhou Z, Yu M, Yang H, Huang K, Li F et al. FRET-based sensor for imaging chromium(iii) in living cells. Chemical Communications 2008; (29): 3387-3389. doi: 10.1039/B801503A
  • 19. Li D, Li C-Y, Qi H-R, Tan K-Y, Li Y-F. Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells. Sensors and Actuators B: Chemical 2016; 223: 705-712. doi: 10.1016/j.snb.2015.09.126
  • 20. Kursunlu AN, Şahin E, Güler E. Bodipy/dipyridylamino-based “turn-on” fluorescent chemosensor for trivalent chromium cations: characterization and photophysical properties. RSC Advances 2015; 5 (8): 5951-5957. doi: 10.1039/C4RA12874E
  • 21. Wang D, Shiraishi Y, Hirai T. A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Letters 2010; 51 (18): 2545-2549. doi: 10.1016/j.tetlet.2010.03.013
  • 22. Guha S, Lohar S, Banerjee A, Sahana A, Hauli I et al. Thiophene anchored coumarin derivative as a turn-on fluorescent probe for $Cr ^{3+} : cell imaging and speciation studies. Talanta 2012; 91: 18-25. doi: 10.1016/j.talanta.2011.12.014
  • 23. Erdemir S, Kocyigit O. Anthracene excimer-based “turn on” fluorescent sensor for $Cr ^{3+} and $Fe ^{3+} ions: Its application to living cells. Talanta 2016; 158: 63-69. doi: 10.1016/j.talanta.2016.05.017
  • 24. Guha S, Lohar S, Banerjee A, Sahana A, Mukhopadhyay SK et al. Anthracene appended coumarin derivative as a Cr(iii) selective turn-on fluorescent probe for living cell imaging: a green approach towards speciation studies. Analytical Methods 2012; 4 (10): 3163-3168. doi: 10.1039/C2AY25693B
  • 25. Fabbrizzi L, Licchelli M, Pallavicini P, Perotti A, Sacchi D. An anthracene-based fluorescent sensor for transition metal ions. Angewandte Chemie International Edition 1994; 33 (19): 1975-1977. doi: 10.1002/anie.199419751
  • 26. Bohne C, Ihmels H, Waidelich M, Yihwa C. N-acylureido functionality as acceptor substituent in solvatochromic fluorescence probes:? detection of carboxylic acids, alcohols, and fluoride ions. Journal of the American Chemical Society 2005; 127 (49): 17158-17159. doi: 10.1021/ja052262c
  • 27. Ihmels H, Meiswinkel A, Mohrschladt CJ, Otto D, Waidelich M et al. Anthryl-substituted heterocycles as acidsensitive fluorescence probes. The Journal of Organic Chemistry 2005; 70 (10): 3929-3938. doi: 10.1021/jo047841z
  • 28. Erdemir S, Malkondu S. Novel “turn on” fluorescent sensors based on anthracene and carbazone units for Cu (II) ion in $CH_3 CN–H2O$. Journal of Luminescence 2015; 158: 86-90. doi: 10.1016/j.jlumin.2014.09.038
  • 29. Lohani CR, Kim J-M, Lee K-H. Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent $Fe ^{3+} ion sensors. Bioorganic & Medicinal Chemistry Letters 2009; 19 (21): 6069-6073. doi: 10.1016/j.bmcl.2009.09.036
  • 30. Ayya Swamy PC, Shanmugapriya J, Singaravadivel S, Sivaraman G, Chellappa D. Anthracene-based highly selective and sensitive fluorescent “turn-on” chemodosimeter for Hg 2+ . ACS Omega 2018; 3 (10): 12341-12348. doi: 10.1021/acsomega.8b01142
  • 31. Singh R, Mitra K, Singh S, Senapati S, Patel VK et al. Highly selective fluorescence ‘turn off’ sensing of picric acid and efficient cell labelling by water-soluble luminescent anthracene-bridged poly(N-vinyl pyrrolidone). Analyst 2019; 144 (11): 3620-3634. doi: 10.1039/C8AN02417K
  • 32. Sivaraman G, Iniya M, Anand T, Kotla NG, Sunnapu O et al. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coordination Chemistry Reviews 2018; 357: 50-104. doi: 10.1016/j.ccr.2017.11.020
  • 33. Karak D, Banerjee A, Sahana A, Guha S, Lohar S et al. 9-Acridone-4-carboxylic acid as an efficient Cr(III) fluorescent sensor: trace level detection, estimation and speciation studies. Journal of Hazardous Materials 2011; 188 (1): 274-280. doi: 10.1016/j.jhazmat.2011.01.110
  • 34. Das S, Sahana A, Banerjee A, Lohar S, Guha S et al. Thiophene anchored naphthalene derivative: $Cr ^{3+} selective turn-on fluorescent probe for living cell imaging. Analytical Methods 2012; 4 (8): 2254-2258. doi: 10.1039/C2AY25384D
  • 35. Zhang J, Zhang L, Wei Y, Chao J, Wang S et al. A selective carbazole-based fluorescent probe for chromium(iii). Analytical Methods 2013; 5 (20): 5549-5554. doi: 10.1039/C3AY41003J
  • 36. Yang Y, Xue H, Chen L, Sheng R, Li X et al. Colorimetric and highly selective fluorescence “turn-on” detection of $Cr ^{3+}$ by using a simple Schiff base sensor. Chinese Journal of Chemistry 2013; 31 (3): 377-380. doi: 10.1002/cjoc.201200852
  • 37. Chereddy NR, Saranraj K, Barui AK, Patra CR, Rao VJ et al. Donor atom selective coordination of $Fe^{3+}$ and $Cr ^{3+} trigger fluorophore specific emission in a rhodamine–naphthalimide dyad. RSC Advances 2014; 4 (46): 24324-24327. doi: 10.1039/C4RA02797C
  • 38. Huang X, Fan C, Wang Z, Zhan X, Pei M et al. A ratiometric and on–off fluorescent chemosensor for highly selective detection of $Cr ^{3+} ion based on an ICT mechanism. Inorganic Chemistry Communications 2015; 57: 62-65. doi: 10.1016/j.inoche.2015.04.022
  • 39. Bao X, Cao Q, Nie X, Zhou Y, Ye R et al. Design and synthesis of a novel chromium(III) selective fluorescent chemosensor bearing a thiodiacetamidemoiety and two rhodamine B fluorophores. Sensors Actuators B Chemical 2015; 221: 930-939. doi: 10.1016/j.snb.2015.07.060
  • 40. Li X-M, Zhao R-R, Yang Y, Lv XW, Wei Y-L et al. A Rhodamine-based fluorescent sensor for chromium ions and its application in bioimaging. Chinese Chemical Letters 2017; 28 (6): 1258-1261. doi: 10.1016/j.cclet.2016.12.029
  • 41. Punithakumari G, Wu SP, Velmathi S. Highly selective detection of $Cr ^{3+} ion with colorimetric & fluorescent response via chemodosimetric approach in aqueous medium. Journal of Fluorescence 2018; 28 (2): 663-670. doi: 10.1007/s10895-018-2228-1
  • 42. Kolcu F, Erdener D, Kaya İ. A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: synthesis, characterization and fluorescent applications. Inorganica Chimica Acta 2020; 509: 119676. doi: 10.1016/j.ica.2020.119676