Voltammetric determination of itopride using carbon paste electrode modified with Gd doped $TiO_2$ nanotubes

Voltammetric determination of itopride using carbon paste electrode modified with Gd doped $TiO_2$ nanotubes

In the present work $TiO_2$ nanotubes (TNT) have been synthesized by alkaline hydrothermal transformation. Then they have been doped with Gd element. Characterizations of doped and undoped TNT have been done with TEM and SEM. The chemical composition was analyzed by EDX, Raman and FTIR spectroscopy. The crystal structure was characterized by XRD. Carbon paste electrode has been fabricated and mixed with Gd doped and undoped TNT to form a nanocomposite working electrode. Comparison of bare carbon paste electrode and Gd doped and undoped TNT carbon paste electrode for $1.0 ×10^{−3} M K_4 [Fe(CN)_6$ ] voltammetric analysis; it was observed that Gd doped TNT modified electrode has advantage of high sensitivity. Gd doped TNT modified electrode has been used as working electrode for itopride assay in a pharmaceutical formulation. Cyclic voltammetry analysis showed high correlation coefficient of 0.9973 for itopride (0.04–0.2 mg/mL) with a limit of detection (LOD) and limit of quantitation values (LOQ) of 2.9 and 23.0 µg.mL −1 respectively.

___

  • 1. Kim YS, Kim TH, Choi CS, Shon YW, Kim SW et al. Effect of itopride, a new prokinetic, in patients with mild GERD: a pilot study. World Journal of Gastroenterology 2005; 11: 210-214. doi: 10.3748/wjg.v11.i27.4210
  • 2. Katagiri F, Shiga T, Inoue S, Sato Y, Itoh H et al. Effects of itopride hydrochloride on plasma gut-regulatory peptide and stress-related hormone levels in healthy human subjects. Pharmacology 2006; 77:115- 121. doi: 10.1159/000093485
  • 3. Ma J, Yuan LH, Ding MJ, Zhang J, Zhang Q et al. Determination of itopride hydrochloride in human plasma by RP-HPLC with fluorescence detection and its use in bioequivalence study. Pharmaceutical Research 2009; 59: 189-193. doi: 10.1016/j.phrs.2008.11.007
  • 4. Khan A, Iqbal Z, Khadra I, Ahmad L, Khan A et al. Simultaneous determination of domperidone and Itopride in pharmaceuticals and human plasma using RP-HPLC/UV detection: Method development, validation and application of the method in in-vivo evaluation of fast dispersible tablets. Journal of Pharmaceutical and Biomedical Analysis 2016; 121: 6-12. doi:10.1016/j.jpba.2015.12.036
  • 5. Harun Rasheed S, Ramakotaiah M, Ravi Kumar K, Nagabhushanam CH, Prasada CHMM. Estimation of Rabeprazole Sodium and Itopride Hydrochloride in Tablet Dosage Form Using Reverse Phase High Performance Liquid Chromatography. E−Journal of Chemistry 2011; 8(1): 37-42. doi: 10.1155/2011/683845
  • 6. Pillai S, Singhvi I. Quantitative Estimation of Itopride Hydrochloride and Rabeprazole Sodium from Capsule Formulation. Indian Journal of Pharmaceutical Science 2008; 70 (5): 658-661. doi: 10.4103/0250-474X.45411
  • 7. Thiruvengada Rajan VS, Mohamed Saleem TS, Ramkanth S, Alagusundaram M, Ganaprakash K et al. A Simple RP-HPLC Method for Quantitation of Itopride HCl in Tablet Dosage Form. Journal of Young Pharmacists 2010; 2(4): 410-413. doi: 10.4103/0975-1483.71634
  • 8. Suganthi A, John S, Ravi TK. Simultaneous HPTLC Determination of Rabeprazole and Itopride Hydrochloride from Their Combined Dosage Form. Journal of Pharmaceutical Science 2010; 70 (3): 366-368. doi: 10.4103/0250- 474X.43004
  • 9. Sun Y, Zhang Z, Xi Z, Shi Z, Tian W. Determination of itopride hydrochloride by high-performance liquid chromatography with Ru(bpy)3 2+ electrogenerated chemiluminescence detection. Analytica Chimica Acta 2009; 648:174-177. doi: 10.1016/j.aca.2009.07.003
  • 10. Gupta KR, Chawla RB, Wadodkar SG. Stability indicating RP-HPLC method for simultaneous determination of pantoprazole sodium and itopride hydrochloride in bulk and capsule. Orbital Electronic Journal of Chemistry, Campo Grande 2010; 2(3): 209-224. doi: 10.17807/orbital.v2i3.87
  • 11. Lee HW, Seo JH, Choi SK, Lee KT. Determination of itopride in human plasma by liquid chromatography coupled to tandem mass spectrometric detection: Application to a bioequivalence study. Analytica Chimica Acta 2007; 583: 118-123. doi: 10.1016/j.aca.2006.09.061
  • 12. Gupta KR, Joshi RR, Chawla RB, Wadodkar SG. UV Spectrophotometric Method for the Estimation of Itopride Hydrochloride in Pharmaceutical Formulation E-Journal of Chemistry 2010; 7: S49-S54. doi: 10.1155/2010/526891
  • 13. Ramadan NK, El-Ragehy NA, Ragab M, TEl-Zeany BA. Simultaneous determination of a binary mixture of pantoprazole sodium and itopride hydrochloride by four spectrophotometric methods. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 2015; 137: 463-470. doi.org/10.1016/j.saa.2014.09.003
  • 14. Sabnis SS, Dhavale ND, Jadhav VY, Gandhi SV. Spectrophotometric simultaneous determination of Rabeprazole Sodium and Itopride Hydrochloride in capsule dosage form. Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy 2008; 69: 849-852. doi.org/10.1016/j.saa.2007.05.048
  • 15. Ragab MT, Abd El-Rahman MK, Ramadan NK, El-Ragehy AN, El-Zeany B. A Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form. Talanta 2015; 138: 28-35. doi: 10.1016/j.talanta.2015.01.045
  • 16. Hun X, Zhang Z. Electrogenerated chemiluminescence sensor for itopride with Ru(bpy) 2+3 doped silica nanoparticles/chitosan composite films modified electrode. Sensors and Actuators B 2008; 131: 403-410. doi.org/10.1016/j.snb.2007.11.055
  • 17. Amro AN. Voltammetric Method Development for Itopride Assay in a Pharmaceutical Formulation. Current Pharmaceutical Analysis 2020; 16(3) 312-318. doi: 10.2174/1573412915666190912122421
  • 18. Siddique MR, Alothman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry 2017; 10: s1409-s14021. doi: 10.1016/j.arabjc.2013.04.016
  • 19. Gupta VK, Rajeev J, Keisham R, Nimisha J, Shilpi A. Voltammetric techniques for the assay of pharmaceuticals-a review. Analytical Biochemistry 2011; 408: 179-196. doi: 10.1016/j.ab.2010.09.027
  • 20. Fedder M, Amro A, Bin Oun S. Voltammetric Determination of vildagliptin in a pharmaceutical formulation. Tropical Journal of Pharmaceutical Research 2018; 17 (9): 1847-1852. doi; 10.4314/tjpr.v17i9.24
  • 21. Ianesko F, de Lima CA, Antoniazzi C, Santana ER, Piovesan JV et al. Simultaneous Electrochemical Determination of Hydroquinone and Bisphenol A using a Carbon Paste Electrode Modified with Silver Nanoparticles. Electroanalysis 2018; 30: 1946-1955. doi: 10.1002/elan.201800074
  • 22. Pourghobadi R, Baezzat MR. Alumina nanoparticles modified carbon paste electrode as a new voltammetric sensor for determination of dopamine. Iranian Chemical Communication 2018; 6 (4): 359-368. doi: 10.30473/ICC.2018.4143
  • 23. Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angewandte Chemie International Edition 2011; 50 (13): 2904-2939. doi: 10.1002/anie.201001374
  • 24. Huang S, Si Z, Li X, Zou J, Yao Y et al. A novel Au/r-GO/TNTs electrode for H2 O2 , O2 and nitrite detection. Sensors Actuators B Chemical 2016; 234: 264-272. doi: 10.1016/j.snb.2016.04.167
  • 25. Wang Q, Huang JY, Li HQ, Zhao AZJ, Wang Y et al. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. International Journal of Nanomedicine 2017; 12: 151-165. doi: 10.2147/IJN.S117498
  • 26. Emran KM, Ali SM, Alanazi HE. Novel Hydrazine Sensors based on Pd Electrodeposited on Highly Dispersed Lanthanide -doped Ti2 Nanotubes. Journal of Electroanalytical Chemistry 2020; 856: 113661-113668. doi: 10.1016/j.jelechem.2019.113661
  • 27. Beydoun D, Amal R, Low G, McEvoy S. Role of nanoparticles in photocatalysis. Journal of Nanoparticles Research 1999; 1: 439-458. doi:10.1023/A:1010044830871
  • 28. Wang X, Li X, Liu D, Song S, Zhang H. Green synthesis of Pt/CeO2 /graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties. Chemical Communications 2012; 48: 2885-2887. doi:10.1039/C2CC17409J
  • 29. Wang W, Li G, Xia D, An T, Zhao H et al. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environmental Science: Nano 2017; 4: 782-799. doi:10.1039/C7EN00063D
  • 30. Clarizia L, Russo D, Di Somma I, Andreozzi R, Marotta R. Metal-based semiconductor nanomaterials for photocatalysis. Multifunctional Photocatalytic Materials for Energy. Elsevier 2018: 187-213.
  • 31. Li ZX, Shi FB, Zhang T, Wu HS, Sun LD et al. Stabilized ordered meso porous titania for near-infrared photocatalysis. Chemical Communications 2011; 47: 8109-8111. doi: 10.1039/C1CC12539G
  • 32. Wang J, Zhou Y, Xiong B, Zhao Y, Huang X et al. Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochimica Acta 2013; 88: 847-857. doi: 10.1016/j.electacta.2012.10.010
  • 33. Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M et al. Lanthanide co-doped TiO2 : the effect of metal type and amount on surface properties and photocatalytic activity. Applied Surface Science 2014; 307: 333-345. doi: 10.1016/j.apsusc.2014.03.199
  • 34. Parnicka P, Mazierski P, Lisowski W, Klimczuk T, Nadolna J et al. A new simple approach to prepare rareearth metals-modified TiO2 nanotube arrays photoactive under visible light: surface properties and mechanism investigation. Results in Physics 2018; 12: 412-423. doi:10.1016/j.rinp.2018.11.073
  • 35. Emran KM., Hessah E. Alanazi. Fabrication and Characterization of Lanthanide-TiO2 Nanotube Composites, 2020.
  • 36. Huang S, Si Z, Li X, Zou J, Yao Y et al. A novel Au/r-GO/TNTs electrode for H2 O2 , O2 and nitrite detection. Sensors Actuators B Chemistry 2016; 234: 264-272. doi: 10.1016/j.snb.2016.04.167
  • 37. Ali I, Kim J-O. Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation. Chemosphere 2018; 207: 285-292. doi: 10.1016/j.chemosphere.2018.05.075
  • 38. Bavykin DV, Friedrich JM, Walsh FC. Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Advanced Materials, 2006; 18 (21): 2807-2824. doi:10.1002/adma.200502696
  • 39. Turki A, Kochkar H, Guillard C, Berhault G, Ghorbel A. Effect of Na content and thermal treatment of titanate nanotubes on the photocatalytic degradation of formic acid Applied Catalysis B: Environmental 2013;138: 401-415.
  • 40. Zhao F, Rong Y, Wan J, Hu Z, Peng Z et al. High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced photogenerated charges separation under visible light. Catalysis Today 2018; 315: 162-170. doi: 10.1016/j.cattod.2018.02.019
  • 41. Nie J, Mo Y, Zheng B, Yuan H, Xiao D. Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Electrochimica Acta 2013; 90: 589-596. doi: 10.1016/j.electacta.2012.12.049
  • 42. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd edition. New York, NY, USA: Wiley, 2001.
  • 43. Khalifa A, El-Desoky H, Abdel-Galeil M. Graphene-based sensor for voltammetric quantification of dapoxetine hydrochloride: a drug for premature ejaculation in formulation and human plasma. Journal of the Electrochemical Society 2018; 165 (3): H128-H140.