Significance of absorption spectra for the chemotaxonomic characterization of pigmented bacteria

A method for characterizing pigmented bacteria based on the numerical analysis of their carotenoid absorption spectra was examined. To achieve this, some non-phototrophic pigmented bacteria that were isolated from various environments and closely related types of species were used. Bacterial carotenoid pigments were extracted with an acetone:methanol (7:2) mixture and the absorption spectra were determined. Data were normalized, and their first derivatives were analyzed using Ward clustering algorithms. Based on the spectral data, isolates were separated into 7 groups. Characterization based on derivative pigment spectral data showed good agreement statistically with biochemical characterization results. The Mantel test indicated that the dissimilarity matrices of phenotypic tests and the pigment spectral data were correlated (P < 0.001). Absorption spectra can simplify and accelerate the identification and characterization of pigmented bacteria, when used with other distinctive biochemical tests. This method might be useful for determination of the microbial community structure in a variety of ecological studies.

Significance of absorption spectra for the chemotaxonomic characterization of pigmented bacteria

A method for characterizing pigmented bacteria based on the numerical analysis of their carotenoid absorption spectra was examined. To achieve this, some non-phototrophic pigmented bacteria that were isolated from various environments and closely related types of species were used. Bacterial carotenoid pigments were extracted with an acetone:methanol (7:2) mixture and the absorption spectra were determined. Data were normalized, and their first derivatives were analyzed using Ward clustering algorithms. Based on the spectral data, isolates were separated into 7 groups. Characterization based on derivative pigment spectral data showed good agreement statistically with biochemical characterization results. The Mantel test indicated that the dissimilarity matrices of phenotypic tests and the pigment spectral data were correlated (P < 0.001). Absorption spectra can simplify and accelerate the identification and characterization of pigmented bacteria, when used with other distinctive biochemical tests. This method might be useful for determination of the microbial community structure in a variety of ecological studies.

___

  • 1. Sobin B, Stahly G. The isolation and absorption spectrum maxima of bacterial carotenoid pigments. J Bacteriol 44: 265- 276, 1942.
  • 2. Liaaen-Jensen S, Andrewes AG. Microbial carotenoids. Ann Rev Microbiol 26: 225-248, 1972.
  • 3. Goodwin TW. The biochemistry of the carotenoids. Plants 1: 33-76, 1980.
  • 4. Sandmann G. Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385: 4-12, 200
  • 5. Goodwin TW, Britton G. Distribution and analysis of carotenoids. In: Goodwin TW. ed. Plant Pigments. Academic Press; 1988, pp. 61-132.
  • 6. Margalith PZ. Pigment Microbiology. Chapman and Hall. London; 1992.
  • 7. Aragno M, Schlegel HG. The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In: Balows A, Trüper HG, Dworkin M et al. eds. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. SpringerVerlag; 1992, pp. 344-384.
  • 8. Shivaji S, Rao NS, Saisree L et al. Isolates of Arthrobacter from the soils of Schirmacher Oasis, Antarctica. Polar Biol 10: 225- 229, 1989.
  • 9. Vandamme P, Bernardet JF, Segers P et al. New perspectives in the classification of the flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827-831, 1994.
  • 10. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405-1417, 2001.
  • 11. Yabuuchi E, Yano I, Oyaizu H et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34: 99-119, 1990.
  • 12. Shivaji S, Rao NS, Saisree L et al. Isolation and identification of Micrococcus roseus and Planococcussp. from Schirmacher Oasis, Antarctica. J Biosci 13: 409-414, 1988.
  • 13. Kocur M. Genus Micrococcus. In: Sneath P, Holt JG. eds. Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins; 1986, pp. 1004-1008.
  • 14. Shivaji S, Ray MK, Rao NS et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 42: 102-106, 1992.
  • 15. Holmes B, Owen R, McMeekin T. Genus Flavobacterium. In: Krieg N, Holt JG. eds. Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins; 1984, pp. 353-361.
  • 16. Krieg NR, Holt JG. Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins. Baltimore; 1984.
  • 17. Balows A, Trüper HG, Dworkin M et al. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag. Berlin, Heidelberg, New York; 1992.
  • 18. Starr MP, Stephens WL. Pigmentation and taxonomy of the genus Xanthomonas. J Bacteriol 87: 293-302, 1964.
  • 19. Starr MP. Genus Xanthomonas. In: Starr MP, Stolp H, Truper HG et al. eds. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. Springer-Verlag; 1981, pp. 742-763.
  • 20. Starr MP, Jenkins CL, Bussey LB et al. Chemotaxonomic significance of the Xanthomonadins, novel brominated aryl polyene pigments produced by bacteria of the genus Xanthomonas. Arch Microbiol 113: 1-9, 1977.
  • 21. Bradbury JF. Genus Xanthomonas. In: Krieg NR, Holt JG. eds. Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins; 1984, pp. 199-210.
  • 22. Schaad NW, Stall RE. Xanthomonas. In: Schaad NW. ed. Laboratory Guide for Identification of Plant Pathogenic Bacteria. The American Phytopathological Society; 1988, pp. 81-94.
  • 23. Taylor RF. Bacterial triterpenoids. Microbiol Rev 48: 181-198, 1984.
  • 24. Meyer JM. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174: 135-142, 2000.
  • 25. Ellinghausen HC, Jr., Pelczar MJ, Jr. Spectrophotometric characterization of Neisseria pigments. J Bacteriol 70: 448-453, 1955.
  • 26. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32: 211-217, 1982.
  • 27. Takaichi S, Shimada K, Ishidsu JI. Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-Carotene and its hydroxyl derivatives. Arch Microbiol 153: 118-122, 1990.
  • 28. Shiba T. Roseobacter litoralis gen. nov., sp.nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria witch contain bacteriochlorophyll a. Syst Appl Microbiol 14: 140-145, 1991.
  • 29. Fuerst JA, Hawkins JA, Holmes A et al. Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyllsynthesizing budding bacterium from fresh water. Int J Syst Bacteriol 43: 125-134, 1993.
  • 30. Yurkov V, Gorlenko VM. New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Microbiology 61: 163-168, 1993.
  • 31. Yurkov V, Gorlenko VM. A new genus of freshwater aerobic, bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiology 60: 628-632, 1992.
  • 32. Yurkov V, Stackebrandt E, Holmes A et al. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427- 434, 1994.
  • 33. Hiraishi A, Ueda Y. Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfodophilus and related marine species to the genus Rhodovulum gen.nov. Int J Syst Bact 44: 15-23, 1994.
  • 34. Phaff H, Fell J. Discussion of the genera of asporogenous yeasts not belonging to the sporobolomycetaceae. In: Lodder J. ed. The yeasts - a taxonomic study. North-Holland; 1970, pp. 1088-1145.
  • 35. Frigaard NU, Larsen KL, Cox RP. Spectrochromatography of photosynthetic pigments as a fingerprinting technique for microbial phototrophs. FEMS Microbiol Ecol 20: 69-77, 1996.
  • 36. Tamer, AÜ. Bakteri taksonomisinde pigment spektrumlarının yeri. XII. Ulusal Biyoloji Kongresi Bildirileri, Edirne, Cilt 5: 1- 5, 1994.
  • 37. Litchfield CD, Oren A. Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466: 81-89, 2001.
  • 38. Willcox WR, Lapage SP, Bascomb S et al. Identification of bacteria by computer: theory and programming. J Gen Microbiol 77: 317-330, 1973.
  • 39. Schmidt K, Connor A, Britton G. Analysis of pigments: carotenoids and related polyenes. In: Goodfellow M, O’Donnel AG. eds. Chemical Methods in Prokaryotic Systematics. John Wiley and Sons Ltd.; 1994, pp. 403-461.
  • 40. Schiedt K, Liaaen-Jensen S. Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H. eds. Carotenoids. Birkhauser; 1995, pp. 81-108.
  • 41. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36: 1627- 1639, 1964.
  • 42. Sneath PHA. BASIC program for the most diagnostic properties of groups from an identification matrix of percent positive characters. Comput Geosci 6: 21-26, 1979.
  • 43. Sokal RR, Rolf FJ. Randomization tests. In: Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company; 1995, pp. 803-819.
  • 44. Manly BFJ. Distance matrices and spatial data. In: Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall; 1997, pp. 172-204.
  • 45. Jenni B, Aragno M. Xanthobacter agilis sp.nov., a motile, dinitrogen-fixing, hydrogen-oxidizing bacterium. Syst Appl Microbiol 9: 254-257, 1987.
  • 46. Wiegel JKW, Schlegel HG. Genus Xanthobacter. In: Krieg NR, Holt JG. eds. Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins; 1984, pp. 325-333.
  • 47. Jenni B, Aragno M, Wiegel KW. Numerical analysis and DNADNA hybridization studies on Xanthobacter and emendation of Xanthobacter flavus. Syst Appl Microbiol 9: 247-253, 1987.
  • 48. Lin S, Schraft H, Oduneru JA et al. Identification of contamination sources of Bacillus cereus in pasteurized milk. Int J Food Microbiol 43: 159-171, 1998.
  • 49. Chattopadhyay MK, Jagannadham MV, Vairamani M et al. Carotenoid pigments of an antarctic psychrotrophic bacterium Micrococcus roseus: Temperature dependent biosynthesis, structure, and interaction with synthetic membranes. Biochem Biophys Res Commun 239: 85-90, 1997.
  • 50. Strand A, Shivaji S, Liaaen-Jensen S. Bacterial carotenoids 55. C50-carotenoids 25. Revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochem Syst Ecol 25: 547-552, 1997.
  • 51. Reddy GSN, Prakash JSS, Prabahar V et al. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 53: 183-187, 2003.
  • 52. Ke B, Imsgard F, Kjosen H et al. Electronic spectra of carotenoids at 77 K. Biochim Biophys Acta 210: 139-152, 1970.
  • 53. Landrum JT, Bone RA. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385: 28-40, 2001.
Turkish Journal of Biology-Cover
  • ISSN: 1300-0152
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Prevalence of hermoactinomyces thalpophilus and T. sacchar i strains with biotechnological potential at hot springs and soils from West Anatolia in Turkey

Ataç UZEL, Erdal BEDİR, E. Esin Hameş KOCABAŞ

Inluence of process parameters on the production of detergent compatible alkaline protease by a newly isolated Bacillus sp. Y.

Majumdar MALA, Shivakumar SRIVIDYA

Evaluation of antibacterial, antifungal, antiviral, and antioxidant potentials of some edible oils and their fatty acid proiles

Bilge ŞENER, İlkay ORHAN, Berrin ÖZÇELİK

Isolation and identification of Trichoderma species from different habitats and their use for bioconversion of solid waste

Ahsanur RAHMAN, Most. Ferdousi BEGUM, Matiur RAHMAN, M. A. BARI

Isolation and identiication of Trichoderma species from diferent habitats and their use for bioconversion of solid waste

Ahsanur RAHMAN, Most. Ferdousi BEGUM, Matiur RAHMAN, M. A. BARI, M. Firoz ALAM, G. N. M. ILIAS

Positive correlation between malathion resistance and fecundity within natural populations of Drosophila melanogaster

Burcu Koçak MEMMİ, Emel ATLI

Chromosome aberrations induced by curcumin and aloin in Allium cepa L. root meristem cells

Loganathan PALANIKUMAR, İrulappan RAGUNATHAN, Natarajan PANNEERSELVAM

The toxicity of a synthetic industrial detergent and a corrosion inhibitor to brackish water fish (Tilapia guineensis)

Doris Fouwe OGELEKA, Lawrence İkechukwu EZEMONYE, Felix E. OKIEIMEN

Inluence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza (Lemnaceae)

Zeliha LEBLEBİCİ, Fatih DUMAN, Ahmet AKSOY

Spectrum and frequency of macromutations induced in chickpea (Cicer arietinum L.)

Aijaz A. WANI