Farklı Toprakların Penetrasyon Dirençleri Üzerine Su İçeriklerinin Etkisi ve Regresyon Modelleri

Bu çalışmanın amacı, toprak su içeriği ile penetrasyon direnci arasındaki ilişkileri ortaya koyarak, farklı toprakların penetrasyon dirençlerinin birbirleri ile kıyaslanmalarını sağlayacak uygun modeller geliştirmektir. Arazi çalışması, Konya ovasında yer alan, Entisol ordosuna dahil, dört farklı toprak üzerinde yapılmıştır. Çalışma sonuçlarına göre, toprak su içerikleri ile penetrasyon dirençleri arasında önemli ilişkiler olduğu belirlenmiştir (r2=0.77 ile 0.99). Bu ilişkiyi ifade etmede Y=a+bX3 regresyon denkleminin uygun olacağı, yapılan regresyon analizlerinden ortaya çıkmıştır. Buradaki Y kilopascal (kPa) olarak penetrasyon direncini, X ağırlık yüzdesi olarak toprak su içeriğini, a ve b ise regresyon analizi sonucu bulunan sabiteleri ifade etmektedir. Bulunan regresyon denklemlerinden hesaplanan penetrasyon dirençleri ile ölçüm sonucu elde edilen penetrasyon dirençlerinin korelasyon katsayıları 0.94 ile 0.99 arasında değişmiştir.

The Effect of Water Content on the Penetration Resistance of Different Soils, and Regression Models

The purposes of this study were to determine the relationships between soil water content and soil penetration resistance, and to develop regression models for comparing penetration resistance in different soils. A field study was conducted on four different soils in Entisol on the Konya plain. Significant relationships were found between soil water content and soil penetration resistance (r2= 0.77 to 0.99). The results of regression analysis showed that the regression equation was Y=a+bX3, in which Y was penetration resistance (kPa) and X was soil water content (%), a and b were constants changing with soil and different layers of the same soil. Correlation coefficients between penetration resistance calculated from regression equations and penetration resistance from field experiment measurements varied between 0.94 and 0.99.

___

  • 1. Karakaplan, S., Değişik Nem ve Basınçta Sıkıştırmanın Toprakların Hacim Ağırlığı, Penetrasyon ve Permeabilite Değerlerine Etkileri. Atatürk Üniv. Ziraat Fak., 40, Erzurum, 1982.
  • 2. Ehlers, W., Kopke, V. Hesse, F., and Bohm, W., Penetration Resistance and Root Growth of Oats in Tilled and Untilled Loess Soil. Soil Tillage Res. 3, 262-275, 1983.
  • 3. Scholefield, D., and Hall, D.M., Constricted Growth of Grass Roots Through Rigid Pores. Plant Soil 85, 153-162, 1985.
  • 4. Richards, B.G., and Green, E.L. Mechanical Stresses on an Expanding Cylindrical Root Analogue in Granular Media. Aust. J. Soil Res., 24, 393-404, 1986.
  • 5. Willatt, S.T., Root Growth of Winter Barley in a Soil Compacted by the Passage of Tractors. Soil and Tillage Res. 7, 41-50, 1986.
  • 6. Cassel, D.K., Bowen, N.D., and Nelson, L.A., An Evaluation of Mechanical Impedance for Three Tillage Treatments of Norfolk Sandy Loam. Soil Sci. Soc. J. 42, 116-120, 1978.
  • 7. Graham, J.P., Blackwell, P.S., Armstrong, J.V., Christian, D.G., Howse, K.R., Dawson, C.J., and Butler, A.P., Compaction of a Silty Loam by Wheeled Agricultural Vehicles. II. Effects on Growth and Yield of Direct-Drilled Winter Wheat. Soil Tillage Res. 7, 189-203, 1986.
  • 8. Vales, J., and Strnad, P., Effect of Deep Loosening and Manuring on Sugarbeet Yields and Quality. Rostlinna-Vyroba, 36 : 6, 643-652, 1990.
  • 9. Lipiec, J., Szustak, A., and Tarkiewicz, S., Soil Compaction : Responses of Soil Physical Properties and Crop Growth. Zeszyty Problem Owe Potepow Nauk Rolnıczych, 398, 113-117, 1992.
  • 10. Henderson, C.W.L., Using a Penetrometer to Predict the Effects of Soil Compaction on the Growth and Yield of Wheat on uniform Sandy Soils. Aust. J. Agric. Res., 40, 497-508, 1989.
  • 11. Carter, M.R., Relative Measures of Soil Bulk Density to Characterize Compaction in Tillage Studies on Fine Sandy Loams. Can. J. Soil Sci., 70 : 425-433, 1990.
  • 12. Çarman K., Tractor Forward Velocity and Tire Load Effects on Soil Compaction. J. of Terramechanics, 31 (1) 11-20, 1994.
  • 13. Busscher, W.I., Adjustment of şat-Tipped Penetrometer Resistance Data to a Common Water Content. Transactions of the ASAE, 33 (2), 519-524, 1990.
  • 14. Ohu, J.O., Raghavan, G.S.V., and McKyes, E., Cone Index Prediction of Compacted Soils. Transactions of the ASAE, 31 (2), 306-310, 1988.
  • 15. Gilli, W.R., Inşuence of Compaction Hardening on Penetration Resistance. Trans. Am. Soc. Agric. Eng. 11, 741-743, 1968.
  • 16. Whiteley, G.M., and Dexter, A.R., The Dependence of Soil Penetrometer Pressure on Penetrometer Size. J. Agric. Engi. 26, 467-476, 1981.
  • 17. Day, P.R., Particle Fractionation and Particle-Size Analysis in C.A. Black et al. (ed.) Methods of Soil Analysis, Part I. Agronomy 9 : 545-567, 1965.
  • 18. Hızalan, E., ve Ünal, H., Toprakta Önemli Kimyasal Analizler. Ankara Üniv. Ziraat Fak. Yayınları, 278, 1966.
  • 19. Hocaoğlu, Ö.L., Toprakta Organik Madde, Nitrojen ve Nitrat Tayini. Atatürk Üniv. Ziraat Fak. Zirai Araştırma Ens. Teknik Bülten No : 9, 1966.
  • 20. Demiralay, ‹., Toprak Fiziksel Analizleri, Atatürk Üniv. Ziraat Fak. Yay. No : 143, Erzurum, 132, 1993.
  • 21. AISN Software, Jandel Scientific Table Curve, 1991.
  • 22. Snedecor, G.W., and Cochran, W.G., Statistical Methods 7th ed., The Iowa State Univ. Press, Ames, Iowa, 1980.