Organik ve Geleneksel Yöntemle Üretilen İçme Sütlerindeki Bileşim Farklılıklarının FTIR Spektroskopisi ile Belirlenmesi

Son yirmi yılda en çok ilgi çeken gıda üretim yöntemlerinden birisi organik gıda üretimidir. Sütün organik ya da geleneksel yöntemlerle üretilip üretilmediğinin belirlenmesi, Fourier dönüşümlü kızılötesi (FTIR) spektroskopisinden daha uzun zaman alan kromatografik ve titrimetrik yöntemler ile yapılmaktadır. Bununla birlikte, literatürde organik ve geleneksel yöntemlerle üretilen gıdalar arasındaki kalite farklarıyla ilgili çelişkili sonuçlar bildirilmiştir. Bu çalışmanın amacı, organik ve geleneksel yöntemle üretilen içme sütlerinin bileşimlerindeki farklılığın tespiti için FTIR spektroskopisinin kullanılabilirliğinin değerlendirilmesidir. Araştırmada materyal olarak 185 adet (98 organik, 87 organik olmayan) pastörize tam yağlı (%3) süt numunesi, Columbus’daki (Ohio, ABD) çeşitli marketlerden tedarik edilmiştir. Kızılötesi spektrumlar, Agilent Cary 630 FTIR spektrometresi ile 4 cm-1 çözünürlükte 4.000-700 cm-1 arasında kaydedilmiş olup spektrum analizi için Yumuşak Bağımsız Sınıf Analojileri Modellemesi (SIMCA) yapılmıştır. Görsel inceleme sonucunda 25±1°C’de 185 adet süt numunesinin spektrumlarının oldukça homojen olduğu tespit edilmiştir. FTIR teknolojisi ile elde edilen spektral veriler, organik ve geleneksel yöntemle üretilen içme sütlerinin bileşim özelliklerine bağlı olarak ayırt edilebileceğini göstermiştir. FTIR spektrometresi, kromatografi gibi diğer tekniklerle karşılaştırıldığında, organik pastörize inek sütündeki tağşişin ekonomik olarak belirlenmesi için basit, hızlı ve güvenli sonuçlar veren bir tekniktir.

Determination of the Compositional Differences in Organic and Conventional Milk using FTIR Spectroscopy

The organic food production has become one of the most attention receiving methods over the past two decades. Previous investigations on the differentiation of milk from conventional and organic production regarding its content ingredients have been done by chromatographic and titrimetric methods that are more time-consuming than Fourier-transform infrared (FTIR) spectroscopy. However, contradictory results are reported in the literature about quality differences between organic and conventional foods. The aim of our research was to evaluate FTIR spectroscopy as a rapid method for the detection of organic milk adulteration. Hundred and eighty-five (98 organic, 87 conventional) pasteurized whole fat (3% fatty) milk samples were supplied by different pasteurized milk markets in Columbus, Ohio, USA. The spectra of 185 milk samples at 25±1°C appeared quite homogeneous upon visual inspection. Infrared spectra were recorded between 4,000 and 700 cm-1 at a resolution of 4 cm-1 on the Agilent Cary 630 FTIR spectrometer with Soft Independent Modeling of Class Analogies (SIMCA) to analyze the spectra. Results showed well-separated clusters allowing discrimination of conventional samples from organic milk according to fatty acid differentiation. FTIR spectrometer, when compared to other techniques, has the main advantage in allowing very rapid measurements and findings characterized by quick results and analyses in the dairy industry for economic adulteration of cow’s milk.

___

  • Aernouts B, Polhin E, Saeys W, Lammertyn. 2011. Mid-infrared spectrometry of milk dairy metabolomics: a comparison of two sampling techniques and effect of homogenization. Analytica chimica Acta, 705:88-97.
  • Anka P-V, Mila S, Pejanovic R, Jovanovic S, Krajinovic G. 2011. The effect of organic milk production on certain milk quality parameters. Acta Veterinaria (Beograd), 61(4): 415-421.
  • Anonim. 2010. Organik tarımın esasları ve uygulanmasına ilişkin yönetmelik, 18 Ağustos 2010 Çarşamba, Resmi gazete no: 27676.
  • Arslan FN. 2018. ATR–FTIR spectroscopy combined with chemometrics for rapid classification of extra virgin olive oils and edible oils from different cultivars available on the Turkish markets. Eskişehir Technical University Journal of Science and Technology a- Applied Sciences and Engineering. 19(4): 926 - 947, DOI: 10.18038/aubtda.425374
  • Arslan FN, Akin G, Elmas SNK, Yilmaz I, Janssen H-G, Kenar A. 2019. Rapid detection of authenticity and adulteration of cold pressed blackcumin seed oil: A comparative study of ATR–FTIR spectroscopy and synchronous fluorescence with multivariate data analysis. Food Control 98: 323–332.
  • Aykas DP ve Rodriguez-Saona LE. 2016. Assessing potato chip oil quality using a portable infrared spectrometer combined with pattern recognition analysis. Analytical methods, The Royal Society of Chemistry, DOI: 10.1039/c5ay02387d
  • Ayvaz H, Plans M, Towers BN, Auer A, Rodriguez-Saona LE. 2015. The use of infrared spectrometers to predict quality parameters of cornmeal (corn grits) and differentiate between organic and conventional practices. Journal of Cereal Science, 62: 22-30.
  • Ayvaz H, Sierra-Cadavid A, Aykas DP, Mulqueeney B, Sullivan S, Rodriguez-Saona LU. 2016. Monitoring multi component quality traits in tomato juice using portable mid-infrared (MIR) spectroscopy and multivariate analysis. Food Control 66: 79-8680.
  • Bayram B. 2019. Comparison of cows’ milk interms of quantity and content raised under organic and conventional conditions. Bahri Dağdaş Hayvancılık Araştırma Dergisi, 8(1): 9-15
  • Berrueta LA, Alonso-Salces RM, Heberger K. 2007. Supervised pattern recognition in food analysis. Journal of chromatography A., 1158: 196-214.
  • Benbrook CM, Butler G, Latif MA, Leifert C, Davis DR. 2013. Organic production enhances milk nutritional quality by shifting fatty acid composition: a United States–wide, 18-month study. PLoS ONE 8:e82429.
  • Bezawada R, Pauwels K. 2013. What is special about marketing organic products? How organic assortment, price, and promotions drive retailer performance. Journal of Marketing, 77 (1): 31–51.
  • Butler G, Stergiadis S. 2020. Organic milk: Does it confer health benefits?ın: givens d. ı.(editors) . milk and dairy foods their functionality in human health and disease. Oxford, United Kingdom: Elsevier Inc. pp.121-143, ISBN 978-0-12-815603-2.
  • Bozyiğit S, Doğan GK, 2015. Türkiye’deki doğal ve organik ürün üreticilerinin yaşadiği pazarlama sorunlari: keşifsel bir araştirma. Journal of Economics and Administrative Sciences Aralık 17(1): 33-47.
  • Capuano E, Rademaker J, van den Bijgaart H., van Ruth S M. 2014. Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Research International, 60: 59–65.
  • Christou C, Agapiou A, Kokkinofta R. 2018. Use of FTIR spectroscopy and chemometrics for the classification of carobs origin. Journal of Advanced Research 10: 1–8.
  • Chung III-M, Park I, Yoon J-Y, Sang Y-S, Kim S-H. 2014 Determination of organic milk authenticity using carbon and nitrogen natural isotopes. Food Chemistry, 214-218.
  • Etzion Y, Linker R, Cogan U, Shmulevich I. 2004. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci., 87: 2779–2788.
  • Gallardo-Velazquez T, Osorio-Revilla G, Loa MZ, Rivera-Espinoza Y. 2009. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification and adulteration in Mexican honeys. Food Research International, 42: 313-318.
  • Hashimoto A, Kameoka T. 2008. Applications of infrared spectroscopy to biochemical, food and agricultural process. Applied Spectroscopy Review, 43(5): 416-451.
  • He H, Rodriguez-Soana LE, Giusti MM. 2007. Mid infrared spectroscopy for juice authentication-rapid differentiation of commercial juices. Journal of Agricultural and Food Chemistry, 55: 443–4452.
  • Hemmerling S, Obermowe T, Canavari M, Sidali KL, Stolz H, Spiller A. 2013. Organic food labels as a signal of sensory quality insights from a cross-cultural consumer survey. Org. Agr., 3: 57–69. DOI 10.1007/s13165-013-0046-y
  • Kırdar SS, Eren S. 2016. Organik süt. Süt dünyası. https://sutdunyasi.com/makaleler/bilimsel/organik-sut/
  • Kummeling I, Thijs C, Huber M, van de Vijver LPL, Snijders BEP, Penders J, Stelma F, van Ree R, van den Brandt PA, Dagnelie PC. 2008. Consumption of organic foods and risk of atopic disease during the first 2 years of life in the Netherlands. Br. J. Nutr. 99(3): 598–605.
  • Leifer D, Grappin R, Pochet S. 1996. Determination of fat, protein, and lactose in raw milk by fourier transform infrared spectroscopy and by analysis with a conventional filter-based milk analyzer. Journal of AOAC International, 79: 3, 711-717.
  • Lin CA, Ayvaz H, Rodriguez-Saona LE. 2013. Application of portable and hand-held infrared spectrometers for determination of sucrose levels in infant cereals. Food Anal. Methods, 7: 1407-1414.
  • Limm W, Karunathilaka SR, Yakes BJ, Mossoba MM, 2018. A portable mid-infrared spectrometer and a non-targeted chemometric approach for the rapid screening of economically motivated adulteration of milk powder. International Dairy Journal, 85: 177-183.
  • Liu N, Parraa HA, Pustjensa A, Hettingab K, Mongondry P, van Rutha SM. 2018. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 184: 128–135.
  • Liu N, Pustjens AM, Erasmus SW, Yang Y, Hettinga K, van Ruth SM. 2020. Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chemistry 314,126153. ttps://doi.org/10.1016/j.foodchem.2019.126153
  • MacDonald HB. 2000. Conjugated linoleic acid and disease prevention: A review of current knowledge. J. Am. Coll. Nutr, 19 (2 Suppl): 111-118.
  • McFadden JR, Huffman WE. 2017. Willingness-to-pay for natural, organic, and conventional foods: the effects of information and meaningful labels. Food Policy, 68: 214–232.
  • Molkentin J, Giesemann A. 2007. Differentiation of organically and conventionally produced milk by stable isotope and fatty acid analysis. Anal Bioanal Chem, 388:297–305. DOI 10.1007/s00216-007-1222-2
  • Mogensen L, Kristensen T, Søegaard K, Jensen SK, Sehested J. 2012. Alfatocopherol and beta-carotene in roughages and milk in organic dairy herds. Livestock Science, 145(1–3), 44–54.
  • OTA. 2019. Organic milk association, U.S. Organic industry survey, Organic Trade Association, Washington, DC. https://ota.com/news/press-releases/21328
  • Pentelescu NO. 2009. Fatty acid, retinol and carotene content of organic milk. Animal Biology & Animal Husbandry International Journal of the Bioflux Society. ABAH Bioflux, 1(1):21-26.
  • Pereira CG, Leite AIN, Andrade J, Bell MJV, Anjos V. 2019. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. LWT - Food Science and Technology, 107: 1–8.
  • Pujolras MP, Ayvaz H, Shotts ML, Richard A, Pittman JT, Herringshaw S, Rodriguez-Saona LE. 2015. Portable infrared spectrometer to characterize and differentiate between organic and conventional bovine butter. J Am Oil Chem Soc, 92: 175–184.
  • Rossell C. 2013. Authentication of Andean Flours using a Benchtop FT-IR System and a Portable FT-IR Spectrometer. Thesis, Graduate Program in Food Science and Technology, The Ohio State University, ABD.
  • Safar M, Bertrand D, Roberta P, Devaux MF, Genot C. 1994. Characterization of edible oils, butters and margarines by fourier transform infrared spectroscopy with attenuated total reflectance. JAOCS, 71: 4 371-377, Nisan.
  • Samarra I, Masdevall C, Foguet-Romero E, Guirro M, Riu M, Herrero P, Canela N, Delpino-Rius A. 2021. Analysis of oxylipins to differentiate between organic and conventional UHT milks. Food Chemistry, basımda. https://doi.org/ 10.1016/j.foodchem.2020.128477
  • Scozzafava G, Gerini F, Boncinelli F, Contini C, Marone E, Casini L. 2020. Organic milk preference: is it a matter of information? Appetite, 144: 104477.
  • Selçuk Z, Maruz H. 2018. Organic Milk Versus Conventional Milk As Functional Milk. Turkish Journal of Agriculture - Food Science and Technology, 6(3): 273-277.
  • Shiroma C, Rodriguez-Saona L. 2009. Application of NIR and MIR spectroscopy in quality control of potato chips. Journal of Food Composition and Analysis, 22(6): 596-605.
  • Slots T, Sorensen J, Nielsen JH. 2008. Tocopherol, carotenoids and fatty acid composition in organic and conventional milk. Milchwissenschaft, 63 (4): 352-355.
  • Smigic N, Djekic I, Tomasevic I, Stanisic N, Nedeljkovic A, Lukovic V, Miocinovic J. 2017. Organic and conventional milk – insight on potential differences. British Food Journal, 119:366–376 https://doi.org/10.1108/BFJ-06-2016-0237
  • Smit LA, Baylin A, Campos H. 2010. Conjugated linoleic acid in adipose tissue and risk of myocardial infarction. Am. J. Clin. Nutr., 92 (1): 34-40.
  • Souhassou S, Bassbasi M, Hirri A, Kzaiber F, Oussama A. 2018. Detection of camel milk adulteration using Fourier transformed infrared spectroscopy FT-IR coupled with chemometrics methods. International Food Research Journal 25(3): 1213-1218.
  • Sun Y, Liu B, Du Y, Snetselaar LG, Sun Q, Hu FB, Bao W. 2018. Inverse association between organic food purchase and diabetes mellitus in US adults. Nutrients 10 (12): 1877.
  • TOB. 2019. Tarım ve Orman Bakanlığı, Organik hayvansal üretim istatistikleri. https://www.tarimorman.gov.tr/Konular/ Bitkisel-Uretim/Organik-Tarim/Istatistikler
  • Topcu Y, Baran D, Denizli G. 2016. Tüketicilerin süt tüketim tercih modellerini temel alan pazarlama taktik ve stratejilerinin belirlenmesi. Alinteri, 31 (B): 18 – 32.
  • Tunick HM, Van Hekken DL, Paul M, Ingham ER, Karreman H J. 2016. Case study: Comparison of milk composition from adjacent organic and conventional farms in the USA. International Journal of Dairy Technology, 69: 1, Şubat,137-142.
  • Tsiafoulis CG, Papaemmanouil C, Alivertis D, Tzamaloukas O, Miltiadou D, Balayssac S, Malet-Martino M, Gerothanassis IP. 2019. NMR-Based metabolomics of the lipid fraction of organic and conventional bovine milk. Molecules, 24(1067);1-18, doi:10.3390/molecules24061067
  • Willer H, Lernoud J. 2017 The World of Organic Agriculture. Statistics and emerging trends, Research Institute of Organic Agriculture FiBL and IFOAM Organics International, Bonn, Germany. Winter CK, Davis SF. 2006. Organic foods. J Food Sci, 71:117–124.
  • Wu LH, Yin SJ, Wang JH. 2014. China development report on food safety, Beijing University Press, Beijing, 85-86.
  • Williams PC. 2001. Implementation of near-infrared technology. In: Williams PC, Norris KH (eds) Near-infrared technology in the agricultural and food industries, 2nd ed. American Association of Cereal Chemistry, St. Paul, 145–169.
  • Wold S. 1976. Pattern-recognition by means of disjoint principal components models. Pattern Recogn, 8:127–139.
  • Wilkerson ED, Anthon GE, Barrett DM, Sayajon GFG, Santos AM, Rodriguez-Saona LE. 2013. Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. Journal of Agricultural and Food Chemistry, 61(9), 2088-2095.
Türk Tarım - Gıda Bilim ve Teknoloji dergisi-Cover
  • ISSN: 2148-127X
  • Yayın Aralığı: Aylık
  • Başlangıç: 2013
  • Yayıncı: Turkish Science and Technology Publishing (TURSTEP)