Fasulye Bakteriyel Adi Yanıklık Hastalığına Karşı Farklı Bakırlı Bileşiklerin Etkililiği

Xanthomonas axonopodis pv. phaseoli'nin neden olduğu bakteriyel adi yanıklık (CBB), üretim alanlarında tüm fasulye çeşitlerini etkileyen en tahripkâr bakteriyel hastalıktır. Bu çalışmada, farklı iklim özelliklerine sahip Konya ve Afyonkarahisar illerinde yaygın olarak yetiştirilen Alberto çeşidi kuru fasulye üzerinde CBB hastalığına karşı farklı bakırlı preparatların etkililiği araştırılmıştır. Tarla koşullarında 5 haftalık fasulye bitkileri, yüksek virülent Xap k133 izolatının 108 hücre mL-1 konsantrasyonundaki bakteri süspansiyonu ile inokule edilmişler ve inokulasyonlardan sonra 5’er gün arayla 2 kez üretici firmalar tarafından önerilen dozlarda bakır hidroksit, bakır sülfat pentahidrat, bakır oksiklorür + bakır hidroksit ve bakır oksiklorür uygulanmıştır. Hastalık şiddeti (%) ve hastalık skoru, 0-9 skalası kullanılarak değerlendirilmiş ve kimyasalların etkililikleri su püskürtülen kontrol bitkileri ile mukayese edilerek Abbott formülü yardımıyla belirlenmiştir. Elde edilen istatistiki verilere göre, en etkili bakırlı preparat %42,59–47,25 etkililik oranlarıyla bakır oksiklorür uygulaması ile tespit edilmiş, bakır sülfat pentahidrat ise %7,69–12,96 oranları ile en düşük etkiliğe sahip olmuştur. Tarımda aşırı miktarda bakır kullanımının çevre ve insan sağlığı üzerindeki olumsuz etkilerinin yanısıra bakteriyel patojenlerde bakıra dirençli ırklar gelişmektedir. Ülkemizde kuru fasulyede CBB hastalığına karşı en etkili bakırlı preparatın belirlenmesi amacıyla yaygın kullanılan preparatların etkinliği ilk kez araştırılmıştır ve elde edilen bulgular ile daha az bakır kullanılarak organik ve çevre dostu sürdürülebilir bir fasulye üretimi yapılabileceği düşünülmektedir.

Effectiveness of Copper Compounds Against Bean Common Bacterial Blight Disease

Common bacterial blight (CBB) caused by Xanthomonas axonopodis pv. phaseoli is the most destructive bacterial disease affecting all bean varieties in production areas. In this study, the effectiveness of different copper preparations against CBB disease on dry beans of Alberto variety, which are widely grown in Konya and Afyonkarahisar provinces with different climatic characteristics, were investigated. In field conditions, after 5-week-old bean plants were inoculated with a bacterial suspension of 108 CFU mL-1 of high virulent Xap k133 isolate, and subsequently twice every with 5 days intervals after inoculation, copper hydroxide, copper sulphate pentahydrate, copper oxychloride + copper hydroxide and copper oxychloride were applied at the doses recommended by the manufacturers. Disease severity (%) and disease score were evaluated using the 0-9 scale, and the effectiveness of the chemicals was compared with the control plants sprayed with water and determined with the help of the Abbott formula. According to the statistical data obtained, the most effective copper compound was determined by the application of copper oxychloride with 42.59-47.25% efficiency rates, copper sulphate pentahydrate had the lowest efficiency with about 7.69-12.96%. In addition to the negative effects of excessive use of copper in agriculture on the environment and human health, copper-resistant strains develops in bacterial pathogens. In order to determine the most effective copper compounds against CBB disease in dry beans in our country, the effectiveness of used as common compounds have been investigated for the first time and an organic and environmentally friendly sustainable bean production is revealed by using less copper.

___

  • Abbott WS. 1925. A method of computing the effectiveness of an insecticide. J. econ. Entomol., 18(2):265–267.
  • Agarwal VK, Sinclair JB. 1997. Principles of seed pathology, 2.ed. Boca Raton: CRC, 538.
  • Altunkaynak AÖ. 2018. Fasulyede (Phaseolus vulgaris L.) farklı azot dozlarının ve bakteri aşılamasının tane verimi ve verim özellikleri üzerine etkileri. Selçuk Üniv. Fen Bilimleri Enst. Tarla Bitkileri ABD Yüksek Lisans Tezi, 44s.
  • Anonim, 2007. http://www.tugem.gov.tr/tugemweb/ bitksuretgelproje.html.
  • Anonim, 2008. www.alata.gov.tr
  • Anonim, 2018. www.fao.org/statistics
  • Anonim, 2018a. Kuru fasulye, https://arastirma.tarimorman. gov.tr/tepge/Belgeler
  • Anonim, 2018b. Meteoroloji 8. Bölge Müdürlüğü’nden elde edilen yayınlanmamış veriler.
  • Ararsa L, Fikre L, Getachew A. 2018. Evaluation of Integrated Management of Common Bacterial Blight of Common Bean in Central Rift Valley of Ethiopia, American Journal of Phytomedicine and Clinical Therapeutics, 6:1-3.
  • Audy P, Laroche A, Saindon G, Huang HC, Gilbertson RL. 1994. Detection of the bean common blight bacteria, Xanthomonas campestris pv. phaseoli and X. c. pv. phaseoli var. fuscans, using the polymerase chain reaction. Phytopathology, 84(10):1185–1192.
  • Bozkurt Aİ. 2009. Fasülye Bakteriyel Yanıklık Hastalığına (Xanthomonas axonopodis pv. phaseoli) Karşı Antogonist Bakterilerle Mücadele Olanakları, Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 1-80.
  • Bradbury JF. 1986. Guide to plant pathogenic bacteria. CAB International, Wallingford, UK,
  • Bruehl G. W., 1987. Soilborne Plant Pathogens, Macmillan Publishing Compan, London, 326.
  • Burkholder WH. 1930. The bacterial diseases of the bean; a comparative study. Memoirs, Cornell University Agriculture Experiment Station, 127: 1-88.
  • Campo R, Russi P, Mara P, Mara H, Peyrou M. 2009. Xanthomonas axonopodis pv. citri enters the VBNC state after copper treatment and retains its virulence. FEMS Microbiol Lett 298: 143–148.
  • Demir G, Gündoğdu M. 1994. Bacterial diseases of food legumes in Aegean Region of Türkiye and effectivity ofsome seed treatments against bean halo blight.J. Turk. Phytopath., 23: 57-66.
  • Diaz Plaza R., Teliz Ortiz D, Munoz OA. 1991, Effect of diseases on bean grown under rainfed conditions at Mixteca poblana, Revista Mexicana de Fitopatologia, 9(1):21-30.
  • Dursun A, Dönmez MF, Şahin F. 2002. Identification of resistance to common bacterial blight disease on bean genotypes grown in Turkey. European Journal of Plant Pathology 108: 811–813.
  • Fourie D. 2002. Distribution and severity of bacterial diseases on dry beans (Phaseolus vulgaris L.) in South Africa. Journal of Phytopathology, 150: 220–226. DOI: https://doi.org/10.1046/ j.1439-0434.2002.00745.x
  • Girma T, Negatu D. 1995. Haricot bean: its importance, production and research in Ethiopia. Breeding for disease resistance with emphasis on durability. Proceedings of a regional workshop for eastern, central and southern Africa, held at Njoro, Kenya, October 2-6, 245-250.
  • Goss RW. 1940. The relation of temperature to common and halo blight of beans, Phytopathology, 30: 258-264.
  • Hagedorn DJ, Inglis DA. 1986. Handbook Of Bean Disease, Wisconsin, 28.
  • Hall R. 1994. Compendium of Bean Diseases (Edt). APS press, The American Phytopathological Society, 73.
  • Harikrishnan R, Del Rio LE, Lamppa RS, Padilla R, Zabala F, Gregoire M, Bradley CA. 2006. Occurrence of foliar fungal and bacterial diseases of dry bean in North Dakota, Plant Health Progress doi,10. http://dx.doi.org/10.1094/PHP-2006- 0915-01-RS
  • Hsieh TF, Huang HC, Mündel HH, Conner RL, Erickson RS, Balasubramanian PM. 2005. Resistence of common bean (Phaseolus vulgaris) to bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens. Phytopathology 153: 245-249. DOI: https://doi.org/10.1111/j.1439-0434.2005.00963
  • Ito MF, Valarini PJ, Patricio FRA, Sugimori MH. 1997. Detection of Xanthomonas campestris pv. phaseoli and fungi in bean seeds produced in Sao Paulo State. Summa Phytopathologica, 23(2):118-121.
  • Kahveci E, Maden S. 1994. Detection of X. campestris pv. phaseoli and Pseudomonas syringae pv. phaseolicola By Bactreiophages. J. Turk Phytopath., 23:79-85.
  • Liang LZ, Halloin JM, Saettler AW. 1992. Use of polyethylene glycol and glycerol as carriers of antibiotics for reduction of Xanthomonas campestris pv. phaseoli in navy bean seeds. Plant Disease, 76(9):875-879. DOI : 10.1094/PD-76-0875
  • Mack AR., Wallen VR. 1974. Effects of various field levels of soil temperatue and soil moisture on the growth of beans infected with bacterial blight, Canadian Journel of Soil Science, 54(2): 149-158.
  • Makini FW. 1995. Bean production and constraints in Kenya with emphasis on diseases. Breeding for disease resistance with emphasis on durability. Proceedings of a regional workshop for eastern, central and southern Africa, held at Njoro, Kenya, October 2-6, 1994, 104-109.
  • Njintang NY, Mbofung, CMF, Waldron, KW. 2001. In vitro protein digestibility and physicochemical properties of dry red bean (Phaseolus vulgaris L.) Flour: Effect of Processing and Incorporation of Soybean and Cowpea Flour. J.Agric.Food Chem. (49):2465-2471.
  • Opio AF. 1990. Control of Common Bacterial Blight of Bean in Uganda, Annual Report of the Bean Improvement Cooperative, 33: 41-42.
  • Opio AF, Teri JM, Allen DJ. 1993. Studies on seed transmission of Xanthomonas campestris pv. phaseoli in common beans in Uganda. African Crop Science Journal, 1(1):59-67.
  • Opio AF, Allen DJ, Teri JM. 1996. pathogenic Variation in Xanthomonas campestris pv. phaseoli, the Causal Agent of Common Bacterial Blight inPhaseolus Beans. Plant Pathology, 45: 1126-1133. DOI: https://doi.org/10.1046/j.1365-3059.1996.d01-187.x
  • Osdaghi E, Alizadeh A, Shams-Bakhsh M, Reza Lak M. 2009. Evaluation of common bean lines for their reaction to the common bacterial blight pathogen. Phytopathologia Mediterranea 48(3):461-468.
  • Öztürk M. 2014. Samsun İli Fasulye Alanlarında Enfeksiyon Oluşturan Bakteriyel Etmenlerin Belirlenmesi, Ondokuz Mayıs Üniversitesi Fen bilimleri Enstitüsü, Yüksek Lisans tezi.
  • Patel PN, Walker JC. 1963. Changes in free amino acid anda mide content of resistant and susceptible bens after infection with halo blight organism. Phytopathplogy, 53(5): 522.
  • Paulin JP, Lachaud G. 1984. Comparison of the efficiency of some chemicals in preveting fireblight blossom infections. Acta Horticulturae, 151:209-214. DOI: 10.17660/ActaHortic.1984.151.27
  • Pedroza SA, Teliz OD, Torre AL, Campbell CL. 1994. Varieties and cultural practices as management tools for multiple diseases on beans (Phaseolus vulgaris L.) in Puebla, Mexico. Revista Mexicana de Fitopatología, 12(2):146-154.
  • Reynolds KL, Zanelli M, Laurence JA. 1987. Effects of sulfur dioxide exposure on the development of common blight in field- grown red kidney beans. Phytopathology, 77(2):331- 334.
  • Robinson DS. 1987. Food biochemistry and nutritional value, ISBN: 0-582-49506-7, USA p138-160.
  • Saettler AW. 1994. Bacterial Brown Spot, Halo Blight and Common Bacterial Blight in Compendium of Bean Diseases (Hall, R., Edt). APS Pres, The American Phytopathological Society, 73.
  • Saikia P, Sarkar CR, Borua I. 1999. Chemical Compositional Factors and of Cooking on Nutrional Quality of Rice Bean. Food Chemistry 67: 347-352.
  • Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory press. NY, US: Cold Spring Harbor.
  • Sat, I.G., 1997. Şeker ve Yunus–90 Çesidi Kuru Fasulyelerin Genel Besinsel Bileşimleri ve Gaz Oluşturan Faktörlerinin Giderilmesi İmkanlari, Atatürk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisligi Yüksek Lisans Tezi, Erzurum.
  • Saygılı H, Şahin F, Aysan Y. 2008. Bitki Bakteri Hastalıkları. Meta Basım, İzmir, 61-68: 177-178.
  • Schaad NW, Jones JB, Chun W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. Ed. 3, American Phytopathological Society (APS Press), 1-15.
  • Singh SP, Munoz CG. 1999. Resistance to Common Bacterial Blight Among Phaseolus Species and Common Bean Improvement. Crop Science, 39: 80-89. DOI: https://doi.org/10.2135/cropsci1999.0011183X003900010013x
  • Sobieczewski P, Chiou CS, Jones AL. 1991. Streptomycinresistant epiphytic bacteria with homologous DNA for streptomycin resitance in Michigan Apple orchards. Plant Dis., 75:1110-1113.
  • Soylu S, Şahin F. 2019. Bitki Bakteri Hastalıkları. Yayın No: 2.08-025-028 / B-I, Toprak Ofset Matbaacılık, Tekirdağ, 239- 242.
  • Steel CJ, Sgarbieri VC, Jackix MH. 1995. Use of Extrusion Technology to Overcome Undesirable Properties of Hard-tocook Dry Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 43:2487–2492.
  • Townsend GR, Heuberger JW. 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reporter, 27: 340–343.
  • Wallen VR,Jackson HR. 1975. Model for yield loss determination of bacterial blight of field beans utilizing aerial infrared photography combined with field plot studies, Phytopathology, 65(9):942-948. DOI : 10.1094/Phyto-65-942
  • Weller DM, Saettler AW. 1976. Chemical control of common and fuscous bacterial blights in Michigan Navy (pea) beans, Plant Disease Reporter, 60(9):793-797.
  • Yoshi K, Galvez GE, Alvarez-Ayala G. 1976. Estimation of yield losses in beans caused by common blight. Proceedings of the American Phytopathological Society, 3:298-299.
  • Zaumayer WJ, Thomas HR. 1957. A monographic study of bean diseases and methods for their control. Technical bulletin US department of agriculture, 868:65-74.