Ekşi Maya Fermantasyonu ile Üretilen Ekmeklerdeki Biyoaktif Bileşenlerin InVitro Biyoerişilebilirliği ve Sağlık Üzerine Etkileri

Ekşi mayalı ekmek, buğday, çavdar veya diğer tahıl unlarının su ile karıştırılması ve laktik asitfermantasyonu sonucu elde edilen geleneksel bir üründür. Ekşi maya fermantasyonu ile üretilengıdaların sağlık üzerindeki etkilerini sağlayan mekanizmaların; mikroorganizmaların probiyotiketkisi, biyoaktif peptit ve organik asitlerin (asetik asit, bütirat, propiyonik asit) üretimi, anti-besin(fitik asit vb.) miktarının azalması, fenolik bileşik ve antioksidan biyoerişilebilirliğinin artması,nişasta ve proteinin sindirilebilirliği ve minerallerin biyoyararlılığında artış, glutenin degradasyonuile çölyak hastalarına yeni ürün geliştirme sağlaması olduğu bildirilmektedir. Bu çalışmada, ekşi mayafermantasyonunun ekmek bileşenleri üzerine etkisi, in vitro biyoerişilebilirliği ve sağlığa faydalarıirdelenmiştir.

In Vitro Bioaccessibility and Health Effects of Bioactive Compounds in Bread Produced by Sourdough Fermentation

Sourdough bread is a traditional product, which is produced by mixing wheat, rye or other grain flourswith water and lactic acid fermentation. The supposed mechanisms for the effect of foods producedby sourdough fermentation on health were probiotic effect of microorganisms, production ofbioactive peptides and organic acids (acetic acid, butyrate, propionic acid), decreased amount of anti nutrients (phytic acid, etc.), digestibility of starch and protein, increased bioaccessibility of phenoliccompounds and bioavailability of minerals, degradation of gluten, new product to celiac patients. Itwas reported to have effects on nutrition, such as product development. In this review, the effect ofsourdough fermentation on the ingredients in bread, in vitro bioaccessibility and health benefits areexamined.

___

  • Abu-Salem, FM, Mohamed, RK, Gibriel, AY, Rasmy, NM. 2014. Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. International Sch. Sci. Res. Innov. 8:296-301.
  • Angelino D, Cossu M, Marti A, Zanoletti M, Chiavaroli L, Brighenti F, ... Martini D. 2017. Bioaccessibility and bioavailability of phenolic compounds in bread:A review. Food & Function, 8(7):2368-2393. doi: 10.1039/c7fo00574a.
  • Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lehtinen P, Bast A, Poutanen K, Haenen GR. 2009. Bioprocessing of Wheat Bran Improves in vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. Journal Agricultural Food Chemistry, 57:6148- 6155. doi: 10.1021/jf900492h.
  • Axel C, Röcker B, Brosnan B, Zannini E, Furey A, Coffey A, Arendt, EK. 2015. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 47:36–44. doi: 10.1016/j.fm.2014.10.005.
  • Bircan D, Güray CT, Bostan K. 2017. Farklı Yöntemlerle Ekşitilmiş Hamurlardan Ekmek Yapımı Üzerine Çalışmalar. Aydın Gastronomy, 1(1):1-8.
  • Bove P, Russo P, Capozzi V, Gallone A, Spano G, Fiocco D. 2013. Lactobacillus plantarum passage through an orogastro-intestinal tract simulator:Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research, 168(6):351-359. doi:10.1016/j.micres.2013.01.004.
  • Boz H, Karaoğlu MM. 2008. Fırın Ürünleri İçin Doğal Katkı Maddeleri. Gıda Mühendisliği Dergisi, 35:57-64.
  • Brandt MJ. 2014. Starter cultures for cereal based foods. Food Microbiology, 37:41-43. doi: 10.1016/j.fm.2013.06.007.
  • Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Clemente A. 2019. Infogest static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4):991. doi: 10.1038/s41596-018-0119-1.
  • Capozzi V, Russo P, Dueňas MT, Lopez P, Spano G. 2012. Lactic acid bacteria producing B-group vitamins:A great potential for functional cereal products. Appl Microbiol Biotechnol., 96:1383-1394. doi:10.1007/s00253-012-4440-2.
  • Catzeddu P. 2019. Sourdough Bread. In:Preedy, VR, Watson, RR (editors). Flour and breads and their fortification in health and disease prevention. Academic press. pp.177-187. ISBN 978- 0-12-814639-2.
  • Coda R, Rizzello CG, Gobbetti M. 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiol, 137:236-245. doi:10.1016/j.ijfoodmicro.2009.12.010.
  • Coda R, Di Cagno R, Gobbetti M, Rizzello CG. 2014. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology, 37:51-58. doi:10.1016/j.fm.2013.06.018.
  • Costabile A, Santarelli S, Claus SP, Sanderson J, Hudspith BN, Brostoff J, Ward JL, Lovegrove A, Shewry PR, Jones HE, Whitley AM, Gibson GR. 2014. Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome. Plos One, 9(10):e111225. doi: 10.1371%2Fjournal.pone.0111225.
  • Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M, Rizzello CG. 2015. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. International Journal of Food Microbiology, 196:51–61. doi:10.1016/j.ijfoodmicro.2014.11.032.
  • Derrien M, van Hylckama Vlieg JE. 2015. Fate, activity and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6):354-366. doi: 10.1016/j.tim.2015.03.002.
  • Dimidi E, Cox SR, Rossi M, Whelan K. 2019. Fermented Foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8):1806. doi:10.3390/nu11081806.
  • Engström N, Sandberg AS, Scheers N. 2015. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients, 7(4): 2134-2144. doi:10.3390/nu7042134.
  • Erginkaya Z, Kabak B. 2011. Fermente Gıdalar. Erkmen, O. (Editör), Gıda Mikrobiyolojisi. ISBN: 978-605-4334-02-5. s. 425-437.
  • Ertop MH, Hayta M. 2016. Ekşi Hamur Fermantasyonunun Ekmeğin Biyoaktif Bileşenleri ve Biyoyararlanımı Üzerindeki Etkileri. Gıda, 41(2), 115-122. doi:10.15237/gida.GD15053.
  • Fekri A, Torbati M, Khosrowshahi AY, Shamloo HB, AzadmardDamirchi S. 2020. Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chemistry, 306:125620. doi: 10.1016/j.foodchem.2019.125620.
  • Fernández-García E, Carvajal-Lérida I, Pérez-Gálvez A. 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11): 751-60. doi:10.1016/j.nutres.2009.09.016.
  • Filannino P, Bai Y, Di Cagno R, Gobbetti M, Gänzle MG. 2015. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46:272-279. doi:10.1016/j.fm.2014.08.018.
  • Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK. 2012. Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 155(3):105–12. doi:10.1016/j.ijfoodmicro.2012.01.009.
  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M. 2014. How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37:30–40. doi: 10.1016/j.fm.2013.04.012.
  • Göçmen D. 2001. Ekşi hamur ve laktik starter kullanımının ekmekte aroma oluşumu üzerine etkileri. Gıda, 26(1):13-16.
  • Hansen, HB, Andreasen, M, Nielsen, M, Larsen, L, Knudsen, BK, Meyer, A, Christensen, L. 2002. Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. European Food Research and Technology, 214(1):33-42. doi:10.1007/s00217-001-0417-6.
  • Hemery, YM, Anson, NM, Havenaar, R, Haenen, GR, Noort, MW, Rouau, X. 2010. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acidsin breads made from processed bran fractions. Food Research International, 43(5):1429-1438. doi: 10.1016/j.foodres.2010.04.013.
  • Abu-Salem, FM, Mohamed, RK, Gibriel, AY, Rasmy, NM. 2014. Levels of some antinutritional factors in tempeh produced from some legumes and jojobas seeds. International Sch. Sci. Res. Innov. 8:296-301.
  • Angelino D, Cossu M, Marti A, Zanoletti M, Chiavaroli L, Brighenti F, ... Martini D. 2017. Bioaccessibility and bioavailability of phenolic compounds in bread:A review. Food & Function, 8(7):2368-2393. doi: 10.1039/c7fo00574a.
  • Anson NM, Selinheimo E, Havenaar R, Aura AM, Mattila I, Lehtinen P, Bast A, Poutanen K, Haenen GR. 2009. Bioprocessing of Wheat Bran Improves in vitro Bioaccessibility and Colonic Metabolism of Phenolic Compounds. Journal Agricultural Food Chemistry, 57:6148- 6155. doi: 10.1021/jf900492h.
  • Axel C, Röcker B, Brosnan B, Zannini E, Furey A, Coffey A, Arendt, EK. 2015. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 47:36–44. doi: 10.1016/j.fm.2014.10.005.
  • Bircan D, Güray CT, Bostan K. 2017. Farklı Yöntemlerle Ekşitilmiş Hamurlardan Ekmek Yapımı Üzerine Çalışmalar. Aydın Gastronomy, 1(1):1-8.
  • Bove P, Russo P, Capozzi V, Gallone A, Spano G, Fiocco D. 2013. Lactobacillus plantarum passage through an orogastro-intestinal tract simulator:Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiological Research, 168(6):351-359. doi:10.1016/j.micres.2013.01.004.
  • Boz H, Karaoğlu MM. 2008. Fırın Ürünleri İçin Doğal Katkı Maddeleri. Gıda Mühendisliği Dergisi, 35:57-64.
  • Brandt MJ. 2014. Starter cultures for cereal based foods. Food Microbiology, 37:41-43. doi: 10.1016/j.fm.2013.06.007.
  • Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, Ballance S, Clemente A. 2019. Infogest static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4):991. doi: 10.1038/s41596-018-0119-1.
  • Capozzi V, Russo P, Dueňas MT, Lopez P, Spano G. 2012. Lactic acid bacteria producing B-group vitamins:A great potential for functional cereal products. Appl Microbiol Biotechnol., 96:1383-1394. doi:10.1007/s00253-012-4440-2.
  • Catzeddu P. 2019. Sourdough Bread. In:Preedy, VR, Watson, RR (editors). Flour and breads and their fortification in health and disease prevention. Academic press. pp.177-187. ISBN 978- 0-12-814639-2.
  • Coda R, Rizzello CG, Gobbetti M. 2010. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). International Journal of Food Microbiol, 137:236-245. doi:10.1016/j.ijfoodmicro.2009.12.010.
  • Coda R, Di Cagno R, Gobbetti M, Rizzello CG. 2014. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology, 37:51-58. doi:10.1016/j.fm.2013.06.018.
  • Costabile A, Santarelli S, Claus SP, Sanderson J, Hudspith BN, Brostoff J, Ward JL, Lovegrove A, Shewry PR, Jones HE, Whitley AM, Gibson GR. 2014. Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome. Plos One, 9(10):e111225. doi: 10.1371%2Fjournal.pone.0111225.
  • Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M, Rizzello CG. 2015. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. International Journal of Food Microbiology, 196:51–61. doi:10.1016/j.ijfoodmicro.2014.11.032.
  • Derrien M, van Hylckama Vlieg JE. 2015. Fate, activity and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 23(6):354-366. doi: 10.1016/j.tim.2015.03.002.
  • Dimidi E, Cox SR, Rossi M, Whelan K. 2019. Fermented Foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8):1806. doi:10.3390/nu11081806.
  • Engström N, Sandberg AS, Scheers N. 2015. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients, 7(4): 2134-2144. doi:10.3390/nu7042134.
  • Erginkaya Z, Kabak B. 2011. Fermente Gıdalar. Erkmen, O. (Editör), Gıda Mikrobiyolojisi. ISBN: 978-605-4334-02-5. s. 425-437.
  • Ertop MH, Hayta M. 2016. Ekşi Hamur Fermantasyonunun Ekmeğin Biyoaktif Bileşenleri ve Biyoyararlanımı Üzerindeki Etkileri. Gıda, 41(2), 115-122. doi:10.15237/gida.GD15053.
  • Fekri A, Torbati M, Khosrowshahi AY, Shamloo HB, AzadmardDamirchi S. 2020. Functional effects of phytate-degrading, probiotic lactic acid bacteria and yeast strains isolated from Iranian traditional sourdough on the technological and nutritional properties of whole wheat bread. Food Chemistry, 306:125620. doi: 10.1016/j.foodchem.2019.125620.
  • Fernández-García E, Carvajal-Lérida I, Pérez-Gálvez A. 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research, 29(11): 751-60. doi:10.1016/j.nutres.2009.09.016.
  • Filannino P, Bai Y, Di Cagno R, Gobbetti M, Gänzle MG. 2015. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46:272-279. doi:10.1016/j.fm.2014.08.018.
  • Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK. 2012. Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. International Journal of Food Microbiology, 155(3):105–12. doi:10.1016/j.ijfoodmicro.2012.01.009.
  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M. 2014. How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37:30–40. doi: 10.1016/j.fm.2013.04.012.
  • Göçmen D. 2001. Ekşi hamur ve laktik starter kullanımının ekmekte aroma oluşumu üzerine etkileri. Gıda, 26(1):13-16.
  • Hansen, HB, Andreasen, M, Nielsen, M, Larsen, L, Knudsen, BK, Meyer, A, Christensen, L. 2002. Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. European Food Research and Technology, 214(1):33-42. doi:10.1007/s00217-001-0417-6.
  • Hemery, YM, Anson, NM, Havenaar, R, Haenen, GR, Noort, MW, Rouau, X. 2010. Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acidsin breads made from processed bran fractions. Food Research International, 43(5):1429-1438. doi: 10.1016/j.foodres.2010.04.013.
  • Taşdelen E. 2018. Ekzopolisakkarit üreticisi Lactobacillus plantarum suşlarının tarhananın kalite özellikleri üzerine etkileri. Yüksek Lisans Tezi, Pamukkale Üniversitesi, Denizli, Türkiye. 61 s.
  • Wolter A. 2013. Fundamental studies of sourdoughs fermented with Weissella cibaria and Lactobacillus plantarum:Influence on baking characteristics, sensory profiles and in vitro starch digestibility of gluten-free breads. PhD Thesis, University College Cork, Ireland. 256 p.
  • Wolter A, Hager AS, Zannin E, Arendt EK. 2014. Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food& Function, 5(3):564-572. doi:10.1039/c3fo60505a.
  • Yalçın E, Yalçın SK, Karademir E. 2018. Tahıl ve bakliyat esaslı gıdalarda fermantasyon işleminin besinsel özellikler ve biyoaktif bileşenler üzerine etkisi. Gıda, 43(1):163-173. doi:10.15237/gida.335154.
  • Yu, L, Beta, T. 2015. Identification and antioxidant properties of phenolic compounds during production of bread from purple wheat grains. Molecules, 20(9):15525-15549. doi:10.3390/molecules200915525.
  • Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, ... Garrett WS. 2016. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. The ISME journal, 10(9): 2235-2245. doi:10.1038/ismej.2016.13.