Hayvan Besleme Stratejileri ile Metan Emisyonunun Azaltılması

Hızla gelişmekte nüfusla birlikte gıda talebine paralel olarak tarımsal ve hayvansal üretimin hızla ilerlemesinin yanında birim hayvan başına verim artışları için uygulanan yöntemler de hızla ilerlemektedir. Hayvansal ürünlerdeki artış birim hayvansal ürün başına çevresel etkileri artırmaktadır. Son yıllarda hayvansal atıkların da artmasıyla sera gazı emisyonu daha da yükselmektedir, bundan dolayı çevre ve hayvan sağlığı olumsuz etkilenmektedir. Bu olumsuz etkinin önlenmesi amacıyla sürdürülebilir yöntemler ve zararlı sera gazlarının emisyonunu azaltmak için işletmede hayvan besleme ve bakımla ilgili stratejik önlemler önem taşımaktadır. En önemli ikinci sera gazı olan metan, bir molekül olarak atmosferde büyük miktarlarda bulunmaktadır, bu gazın atmosferde birikmesi CO₂’den fazla olması bu konuya olan ilgiyi artırmaktadır. Rumen koşullarının optimizasyonu ve birim hayvan başına verimliliğini artırmak için ruminant hayvanların beslenmesi ile ilgili farklı uygulamalar (yem katkı maddelerinin kullanımı, yemleme stratejileri) gelişmekte olan bir alandır. Bu bilginin hayvan yetiştiricileri ile paylaşılması ve hem metan hem de azot emisyonlarının azaltılması açısından çevreye ve dolayısıyla insan ve hayvan sağlığına da fayda sağlayacaktır. Ruminant hayvanlarda, metan gazının vücuttan atılabilmesi için yemle alınan brüt enerjinin %2-12 aralığında kaybına sebep olabilmektedir. Ruminantlar için metan emisyonlarına neden olan dışkı ve idrardaki nitrojen kayıplarını azaltmaya yönelik besleme konusunda birçok sayıda araştırma yapılmakta olup bu araştırmaların birçoğu halen kalıcı bir sonuca ulaşamamaktadır. Yapılacak olan enterik CH₄ emisyonundaki azaltma, yöntemleri çiftçilerin ve hayvanların özel ihtiyaçlarına ve uygun maliyetli olmasına göre uyarlanmalıdır. Çalışmamızda, farklı koşullarda, hayvan besleme stratejileri ile metan emisyonunun azaltılmasının derlenmesi amaçlanmıştır.

Reducing Methane Emissions with Animal Feeding Strategies

The methods applied for yield increases per unit animal are also progressing rapidly, along with the rapid progress of agricultural and animal production in parallel with the rapidly developing population and the food demand. The increase in animal products increases the environmental impacts per unit of animal product. With the increase in animal wastes in recent years, greenhouse gas emissions have increased even more, thus negatively affecting the environment and animal health. In order to prevent this negative effect, sustainable methods and strategic measures related to animal feeding and care are important in order to reduce the emission of harmful greenhouse gases. Methane, which is the second most important greenhouse gas, is found in large amounts in the atmosphere as a molecule, the accumulation of this gas in the atmosphere more than CO₂ increases the interest in this subject. Different practices related to the nutrition of ruminant animals (use of feed additives, feeding strategies) in order to optimize rumen conditions and increase productivity per unit animal is a developing area. Sharing thisinformation with animal breeders will also benefit the environment, and therefore human and animal health, in terms of reducing both methane and nitrogen emissions. In ruminant animals, it can cause a loss of 2-12% of the gross energy taken with the feed so that the methane gas can be removed from the body. There are many studies on feeding to reduce nitrogen losses in faeces and urine, which cause methane emissions for ruminants, and many of these studies still do not reach a permanent conclusion. The reduction in enteric CH₄ emissions to be made must be tailored to the specific needs of farmers and livestock, and to be cost-effective. In our study, it is aimed to compile animal feeding strategies and reduction of methane emissions under different conditions.

___

  • Abdalla AL, Louvandini H, Sallam SMAH, Bueno ICS, Tsai SM, Figueira AVO. 2012. ın vitro evaluation, in vivo quantification and microbial diversity studies of nutritional strategies for reducing enteric methane production. Tropical Animal Health and Production, 44(5): 953-964. https://doi.org/10.1007/s11250-011-9992-0
  • Aksay CS, Ketenoğlu O, Kurt L. 2005. Küresel ısınma ve iklim değişikliği. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(25): 29-42.
  • Ao RL. ve Emeritus D. 2008. The potential of feeding nitrate to reduce enteric methane production ın ruminants a report to the department of climate change. Canberra, Australia. ISBN:79-559-285-529.
  • Aydın G. 2008. Kömür Kökenli metanın kullanım teknolojileri ve enerji üretiminden kaynaklanan antropojenik metan emisyonlarının analizi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans Tezi, Trabzon, Türkiye. Aydın G, Karakurt İ, Aydıner K. 2011. Antropojenik metan emisyonlarinin sektörel analizi. Tübav Bilim Dergisi, 4(1): 42-51. ISSN:1308 – 4941.
  • Bannink A, Van Schijndel MW, Dijkstra J. 2011. A model of enteric fermentation ın dairy cows to estimate methane emission for the dutch national ınventory report using the ıpcc tier 3 approach. Animal Feed Science and Technology, 166: 603-618. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.043
  • Bayat A ve Shingfield KJ. 2012. Overview of nutritional strategies to lower enteric methane emissions in ruminants. Suomen Maataloustieteellisen Seuran Tiedote, (28): 1-7. DOI: https://doi.org/10.33354/smst.75433
  • Beauchemin K, Colombattovd D, Morgavi DP, Yang WZ. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science, 81(14- 2):37-47. DOI: https://doi.org/10.2527/2003.8114_suppl_2E37x
  • Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM. 2011. Mitigation of greenhouse gas emissions from beef production in western canada evaluation using farm based life cycle assessment. Animal Feed Science and Technology, 166: 663-677. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.047
  • Beauchemin K ve McGinn S. 2006. Methane emissions from beef cattle: effects of fumaric acid, essential oil and canola oil. Journal of Animal Science, 84(6): 1489-1496. DOI: https://doi.org/10.2527/2006.8461489x
  • Beauchemin K, Kreuzer M, O’Mara F, McAllister TA. 2008. Nutritional management for enteric methane abatement: a review. Australian Journal of Experimental Agriculture, 48(2): 21-27. DOI: https://doi.org/10.1071/EA07199
  • Beauchemin KA, McAllister TA, McGinn SM. 2009. Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives In Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(35): 1-18. doi: 10.1079/ PAVSNNR20094035.
  • Beever D, Dhanoa MS, Losada HR, Evans RT, Cammell SB, France J. 1986. The effect of forage species and stage of harvest on the processes of digestion occurring ın the rumen of cattle. British Journal of Nutrition, 56(2): 439-454. DOI: https://doi.org/10.1079/BJN19860124
  • Benchaar C, Pomar C, Chiquette J. 2001. Evaluation of dietary strategies to reduce methane production ın ruminants: a modelling approach. Canadian Journal of Animal Science, 81(4): 563-574. DOI: https://doi.org/10.4141/A00-119
  • Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA. 2008. A review of plant derived essential oils ın ruminant nutrition and production. Animal Feed Science and Technology, 145(1-4): 209-228. DOI: https://doi.org/10.1016/j.anifeedsci.2007.04.014
  • Benchaar C ve Greathead H. 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Animal Feed Science and Technology, 166, 338- 355. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.024
  • Bird SH, Hegarty RS, Woodgate R. 2010. Modes of transmission of rumen protozoa between mature sheep. Animal Production Science, 50(6): 414-417. DOI: https://doi.org/10.1071/AN09216
  • Boadi D, Wittenberg KM, Scott SL, Burton D, Buckley K, Small JA, Ominski KH. 2004. Effect of low and high forage diet on enteric and manure pack greenhouse gas emissions from a feedlot. Canadian Journal of Animal Science, 84(3): 445-453. DOI: https://doi.org/10.4141/A03-079
  • Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176(1-4): 78-93. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.010
  • Broucek J. 2014. Production of methane emissions from ruminant husbandry: a review. Journal of Environmental Protection, 5(15): 1482. DOI: 10.4236/jep.2014.515141
  • Bruning Fann CS. ve Kaneene JB. 1993. The effects of nitrate, nitrite and n-nitroso compounds on human health: a review. Veterinary and Human Toxicology, 35(6): 521-538. PMID: 8303822
  • Buddle BM, Denis M, Attwood GT, Altermann E, Janssen PH, Ronimus RS, Pinares-Patiño CS, Muetzel S, Neil Wedlock D. 2011. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. The Veterinary Journal, 188(1): 11-17. DOI: https://doi.org/10.1016/j.tvjl.2010.02.019
  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications ın foods a review. International Journal of Food Microbiology, 94(3): 223-253. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  • Callaway TR, Carneiro De Melo AMS, Russell JB. 1997. The effect of nisin and monensin on ruminal fermentations ın vitro. Current Microbiology, 35(2): 90-96. DOI: https://doi.org/10.1007/s002849900218
  • Calsamiglia S, Busquet M, Cardozo PW, Castillejos L, Ferret A.2007. Invited review: essential oils as modifiers of rumen microbial fermentation. Journal of Dairy Science, 90(6): 2580-2595. DOI: https://doi.org/10.3168/jds.2006-644
  • Cao Y, Takahashi T, Horiguchi K, Yoshida N, Cai Y. 2010. Methane emissions from sheep fed fermented or nonfermented total mixed ration containing whole-crop rice and rice bran. Animal Feed Science and Technology, 157(1-2): 72-78. DOI: https://doi.org/10.1016/j.anifeedsci.2010.02.004
  • Capper JL, Cady RA, Bauman DE. 2009. The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science, 87(6): 2160-2167. DOI: https://doi.org/10.2527/jas.2009-1781
  • Castillo C, Benedito JL, Méndez J, Pereira V, Lopez Alonso M, Miranda M, Hernández J. 2004). Organic acids as a substitute for monensin in diets for beef cattle. Animal Feed Science and Technology, 115(1-2): 101-116. DOI: https://doi.org/ 10.1016/j.anifeedsci.2004.02.001
  • Cavanagh A, McNaughton L, Clark H, Greaves C, Gowan JM, Pinares-Patino C, Dalley D, Vlaming B, Molano G. 2008. Methane emissions from grazing jersey × friesian dairy cows ın mid lactation. Australian Journal of Experimental Agriculture, 48(2): 230-233. DOI: https://doi.org/ 10.1071/EA07277
  • Chagunda M, Römer DAM, Roberts DJ. 2009. Effect of genotype and feeding regime on enteric methane, non-milk nitrogen and performance of dairy cows during the winter feeding period. Livestock Science, 122(2-3): 323-332. DOI: https://doi.org/10.1016/j.livsci.2008.09.020
  • Chuntrakort P, Otsuka M, Hayashi K, Takenaka A, Udchachon S, Sommart K. 2014. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the ıntake, digestibility and enteric methane emissions of zebu beef cattle fed rice straw based diets. Livestock Science, 161: 80-89. DOI: https://doi.org/10.1016/j.livsci.2014.01.003
  • Clark H, Kelliher F, Pinares-Patiño C. 2010. Reducing CH4 emissions from grazing ruminants in new zealand: challenges and opportunities. Asian-Australasian Journal of Animal Sciences, 24(2): 295-302. DOI: https://doi.org/10.5713/ ajas.2011.r.04
  • Clark H. 2013. Nutritional and host effects on methanogenesis ın the grazing ruminant. Animal, 7: 41-48. DOI: https://doi.org/10.1017/S1751731112001875
  • Çelik S, Bacanlı H, Görgeç H. 2008. Küresel ıklim değişikliği ve ınsan sağlığına etkileri. Telekomünikasyon Şube Müdürlüğü, 1: 31. De Vries M, De Boer IJM. 2010. Comparing environmental ımpacts for livestock products: a review of life cycle assessments. Livestock Science, 128(1-3): 1-11. DOI: https://doi.org/10.1016/j.livsci.2009.11.007
  • Del Prado A, Chadwick D, Cardenas L, Misselbrook T, Scholefield D, Merino P. 2010. Exploring systems responses to mitigation of ghg in uk dairy farms. Agriculture, Ecosystems & Environment, 136(3-4): 318-332. DOI: https://doi.org/10.1016/j.agee.2009.09.015
  • Dickens GR, Castillo MM, Walker JCG. 1997. A blast of gas ın the latest paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate geology. The Geologıcal Society of America, 25(3): 259-262. DOI: https://doi.org/10.1130/0091- 7613(1997)025<0259:ABOGIT>2.3.CO;2
  • Dijkstra J, Oenema O, Bannink A. 2011. Dietary strategiesto reducing n excretion from cattle: ımplications for methane emissions. Current Opinion in Environmental Sustainability, 3(5): 414-422. DOI: https://doi.org/10.1016/j.cosust.2011.07.008
  • Doğan S. 2005. Türkiye’nin küresel ıklim değişikliğinde rolü ve önleyici küresel çabaya katılım girişimleri. CÜ İktisadi ve İdari Bilimler Dergisi, 6(2): 57-73.
  • Doreau M ve Chilliard Y. 1997. Digestion and metabolism of dietary fat ın farm animals. British Journal of Nutrition, 78(1): 15-35. DOI: DOI: https://doi.org/10.1079/BJN19970132
  • Dorman HD ve Deans SG. 2000. antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2): 308-316. DOI: https://doi.org/10.1046/j.1365-2672.2000.00969.x
  • Eckard RJ, Grainger C, De Klein CAM. 2010. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Science, 130(1-3): 47-56. DOI: https://doi.org/10.1016/j.livsci.2010.02.010
  • Eun JS ve Beauchemin K. 2007. Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using ın vitro fermentation characteristics. Animal Feed Science and Technology, 132(3-4): 298-315. DOI: https://doi.org/ 10.1016/j.anifeedsci.2006.02.014
  • Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiology Letters, 117(2): 157-161. DOI: https://doi.org/10.1111/j.1574-6968.1994.tb06758.x
  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of The United Nations (FAO), ISBN: 9789251079201.
  • Giannenas I, Skoufos J, Giannakopoulos C, Wiemann M, Gortzi O, Lalas S, Kyriazakis I. 2011. Effects of essential oils on milk production, milk composition, and rumen microbiota ın chios dairy ewes. Journal of Dairy Science, 94(11): 5569- 5577. DOI: https://doi.org/10.3168/jds.2010-4096
  • Giger Reverdin S, Morand Fehr P, Tran G. 2003. Literature survey of the ınfluence of dietary fat composition on methane production ın dairy cattle. Livestock Production Science, 82(1): 73-79. DOI: https://doi.org/10.1016/S0301-6226(03) 00002-2
  • Goel G, Makkar HPS, Becker K. 2009. Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations. British Journal of Nutrition, 101(10): 1484- 1492. DOI: https://doi.org/10.1017/S0007114508076198
  • Goel G, Makkar HPS. 2012. Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production, 44(4): 729-739. DOI: https://doi.org/10.1007/s11250-011-9966-2
  • Grainger C, Williams R, Clarke T, Wright ADG, Eckard RJ. 2010. supplementation with whole cottonseed causes longterm reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. Journal of Dairy Science, 93(6): 2612-2619. DOI: https://doi.org/10.3168/ jds.2009-2888
  • Grainger C ve Beauchemin K. 2011. Can enteric methane emissions from ruminants be lowered without lowering their production. Animal Feed Science and Technology, 166- 167(23): 308-320. DOI: https://doi.org/10.1016/ j.anifeedsci.2011.04.021
  • Greathead H. 2003. Plants and plant extracts for ımproving animal productivity. Proceedings of The Nutrition Society, 62(2): 279-290. DOI: https://doi.org/10.1079/PNS2002197
  • Guan H, Wittenberg KM, Ominski KH, Krause DO. 2006. Efficacy of ionophores in cattle diets for mitigation of enteric methane. Journal of Animal Science, 84(7): 1896-1906. DOI: https://doi.org/10.2527/jas.2005-652
  • Hammond K, Burke JK, Koolaard JP, Muetzel S, Pinares-Patiño CS, Waghorn GC. 2013. Effects of feed ıntake on enteric methane emissions from sheep fed fresh white clover (trifolium repens) and perennial ryegrass (lolium perenne) forages. Animal Feed Science and Technology, 179(1-4): 121-132. DOI: https://doi.org/10.1016/j.anifeedsci.2012.11.004
  • Haque MN. 2018. Dietary Manipulation: A sustainable way to mitigate methane emissions from ruminants. Journal of Animal Science and Technology, 60(1): 1-10. DOI: https://doi.org/10.1186/s40781-018-0175-7
  • Hegarty, R., 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Australian Journal of Agricultural Research, 50(8): 1321-1328. DOI: https://doi.org/10.1071/AR99008
  • Hironaka R, Mathison GW, Kerrigan BK, Vlach I. 1996. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Science of The Total Environment, 180(3), 221-227. DOI: https://doi.org/10.1016/0048- 9697(95)04948-7
  • Hook SE, Northwood KS, Wright ADG, McBride BW. 2009 Longterm monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Applied and Environmental Microbiology, 75(2): 374-380. DOI: 10.1128/AEM.01672-08
  • Hook SE, Wright ADG, McBride BW. 2010. Methanogens: methane producers of the rumen and mitigation strategies. Archaea, 2010: 11. DOI: https://doi.org/10.1155 /2010/945785
  • Hristov AN, Ivan M, Neill L, McAllister TA. 2003. Evaluation of several potential bioactive agents for reducing protozoal activity ın vitro. Animal Feed Science and Technology, 105(1-4): 163-184. DOI: https://doi.org/10.1016/S0377- 8401(03)00060-9
  • Ingale SL, Lokhande A, Zadbuke S. 2013. Nutritional strategies to mitigate greenhouse gases emission from livestock agriculture: a review. Livestock Research International, 1(2): 34-45.
  • Jenkins TC, 1993. Lipid metabolism ın the rumen. Journal of Dairy Science, 76(12): 3851-3863. DOI: https://doi.org/10.3168/jds.S0022-0302(93)77727-9
  • Johnson DE ve Ward GM. 1996. Estimates of animal methane emissions. Environmental Monitoring and Assessment, 42(1): 133-141. DOI: https://doi.org/10.1007/BF00394046
  • Johnson KA ve Johnson DE, 1995. Methane emissions from cattle. Journal of Animal Science, 73(8): 2483-2492. DOI: https://doi.org/10.2527/1995.7382483x
  • Karakurt I, Aydın G, Aydıner K. 2012. Sources and mitigation of methane emissions by sectors: a critical review. Renewable Energy, 39(1): 40-48. DOI: https://doi.org/10.1016 /j.renene.2011.09.006
  • Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. 2014. Invited review: enteric methane ın dairy cattle production: quantifying the opportunities and ımpact of reducing emissions. Journal of Dairy Science, 97(6): 3231-3261. DOI: https://doi.org/10.3168/jds.2013-7234
  • Kobayashi Y. 2010. Abatement of methane production from ruminants: trends in the manipulation of rumen fermentation. Asian-Australasian Journal of Animal Sciences, 23(3): 410- 416. DOI: https://doi.org/10.5713/ajas.2010.r.01
  • Kolver ES, Aspin PW, Jarvis GN, Elborough KM, Roche JR. 2004. Fumarate reduces methane production pasture fermented in continuous culture. In Proceedıngs New Zealand Socıety of Anımal Productıon, 64:155-159.
  • Koyuncu M. 2017. Küresel iklim değişikliği ve hayvancılık. Selcuk Journal of Agriculture and Food Sciences, 31(2): 98- 106. DOI: https://doi.org/10.15316/SJAFS.2017.26
  • Kristjansson JK, Schönheit P, Thauer RK. 1982. Different ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent ınhibition of methanogenesis by sulfate. Archives of Microbiology, 131(3): 278-282. DOI: https://doi.org/10.1007/BF00405893
  • Lascano CE ve Cárdenas E. 2010. Alternatives for methane emission mitigation in livestock systems. Revista Brasileira de Zootecnia, 39, 175-182. DOI: https://doi.org/10.1590 /S1516-35982010001300020
  • Lee SS, Hsu JT, Mantovani HC, Russell JB. 2002. The Effect of bovicin hc5, a bacteriocin from streptococcus bovis hc5, on ruminal methane production ın vitro. FEMS Microbiology Letters, 217(1): 51-55. DOI: https://doi.org/10.1111/j.1574- 6968.2002.tb11455.x
  • Leng RA. 1993. Quantitative ruminant nutrition a green science. Australian Journal of Agricultural Research, 44(3): 363-380. DOI: https://doi.org/10.1071/AR9930363
  • Lopez S, Mclntosh FM, Wallace RJ, Newbold CJ. 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Animal Feed Science and Technology, 78(1-2): 1-9. DOI: https://doi.org/10.1016/ S0377-8401(98)00273-9
  • Macheboeuf D, Morgavi DP, Papon Y, Mousset JL, ArturoSchaan M. 2008. Dose–response effects of essential oils on ın vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology, 145(1-4): 335-350. DOI: https://doi.org/10.1016/j.anifeedsci.2007.05.044
  • Machmüller A, Ossowski DA, Kreuzer M. 2000. Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance ın lambs. Animal Feed Science and Technology, 85(1-2): 41-60. DOI: https://doi.org/10.1016/S0377- 8401(00)00126-7
  • Manasri N, Wanapat M, Navanukraw C. 2012. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livestock Science, 148(3): 291-295. DOI: https://doi.org/10.1016/ j.livsci.2012.06.009
  • Mantovani HC, Hu H, Worobo RW, Russell JB. 2002. Bovicin HC5, a bacteriocin from streptococcus bovis HC5. Microbiology, 148(11): 3347-3352. DOI: https://doi.org/ 10.1099/00221287-148-11-3347
  • Martin SA, Streeter MN, Nisbet DJ, Hill GM, Williams SE. 1999. Effects of DL-Malate on ruminal metabolism and performance of cattle fed a high-concentrate diet. Journal of Animal Science, 77(4): 1008-1015. DOI: https://doi.org/ 10.2527/1999.7741008x
  • Martin C, Morgavi DP, Doreau M. 2010. Methane mitigation ın ruminants: from microbe to the farm scale. Animal, 4(3): 351- 365. DOI: https://doi.org/10.1017/S1751731109990620
  • McAllister TA, Cheng KJ, Okine EK, Mathison GW. 1996. Dietary, environmental and microbiological aspects of methane production ın ruminants. Canadian Journal of Animal Science, 76(2): 231-243. DOI: https://doi.org/ 10.4141/cjas96-035
  • McAllister TA ve Newbold CJ. 2008. Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48(2): 7-13. DOI: https://doi.org/10.1071/EA07218
  • McAllister TA, Beauchemin KA, Alazzeh AY, Baah J, Teather RM, Stanford K. 2011. Review: the use of direct fed microbials to mitigate pathogens and enhance production ın cattle. Canadian Journal of Animal Science, 91(2): 193-211. DOI: https://doi.org/10.4141/cjas10047
  • McGinn SM, Beauchemin KA, Coates T, Colombatto D. 2004. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. Journal of Animal Science, 82(11): 3346-3356. DOI: https://doi.org/10.2527/2004.82113346x
  • McGuffey RK, RichardsonRF, Wilkinson JID. 2001. Ionophores for dairy cattle: current status and future outlook. Journal of Dairy Science, 84: 194-203. DOI: https://doi.org/10.3168/ jds.S0022-0302(01)70218-4
  • Mekuriaw S, Tsunekawa A, Ichinohe T, Tegegne F, Haregeweyn N, Kobayashi N, Tassew A, Mekuriaw Y, Walie M, Tsubo M, Okuro T, Meshesha DT, Meseret M, Sam L, Fievez V. 2020. Effect of feeding ımproved grass hays and eragrostis tef straw silage on milk yield, nitrogen utilization, and methane emission of lactating fogera dairy cows in ethiopia. Animals, 10(6): 1021. DOI: https://doi.org/10.3390/ ani10061021
  • Milich L. 1999. The role of methane ın global warming: where might mitigation strategies be focused. Global Environmental Change, 9(3): 179-201. DOI: https://doi.org/10.1016/S0959- 3780(98)00037-5
  • Mohajan H. 2011. Dangerous effects of methane gas ın atmosphere. InternationalJournal of Economic and Political Integration, 2(1): 3-10. https://mpra.ub.uni-muenchen.de/ 50844/
  • Molano G ve Clark H. 2008. The effect of level of ıntake and forage quality on methane production by sheep. Australian Journal of Experimental Agriculture, 48(2): 219-222. DOI: https://doi.org/10.1071/EA07253
  • Molano G, Knight TW ve Clark H. 2008b. Fumaric acid supplements have no effect on methane emissions per unit of feed intake in wether lambs. Australian Journal of Experimental Agriculture, 48(2): 165-168.DOI: https://doi.org/10.1071/EA07280
  • Morgavi DP, Jouany JP, Martin C. 2008. Changes ın methane emission and rumen fermentation parameters ınduced by refaunation ın sheep. Australian Journal of Experimental Agriculture, 48(2): 69-72. DOI: https://doi.org/ 10.1071/EA07236
  • Morgavi DP, Forano E, Martin C, Newbold CJ. 2010. Microbial ecosystem and methanogenesis ın ruminants. Animal, 4(7): 1024-1036. DOI: https://doi.org/10.1017/S1751731110000546
  • Morovský M, Pristaš P, Czikková S, Javorský P. 1998. A bacteriocin-mediated antagonism by Enterococcus Faecium BC25 against ruminal streptococcus bovis. Microbiological Research, 153(3): 277-281. DOI: https://doi.org/ 10.1016/S0944-5013(98)80012-8
  • Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: ıts contribution to global warming. Annales de zootechnie EDP Sciences, 49(3): 231-253. DOI: https://doi.org/10.1051/animres:2000119
  • Moumen A, Yáñez-Ruiz DR, Martín-García I, Molina-Alcaide E. 2008. Fermentation characteristics and microbial growth promoted by diets ıncluding two-phase olive cake ın continuous fermenters. Journal of Animal Physiology and Animal Nutrition, 92(1): 9-17. DOI: https://doi.org/ 10.1111/j.1439-0396.2007.00685.x
  • Moumen A, Azizi G, Chekroun KB, Baghour M. 2016. The effects of livestock methane emission on the global warming: a review. International Journal of Global Warming, 9(2): 229- 253. DOI: https://doi.org/10.1504/IJGW.2016.074956
  • Newbold CJ, Lassalas B, Jouany JP. 1995. The ımportance of methanogens associated with ciliate protozoa ın ruminal methane production ın vitro. Letters in Applied Microbiology, 21(4): 230-234. DOI: https://doi.org/ 10.1111/j.1472-765X.1995.tb01048.x
  • Newbold CJ, McIntosh FM, Williams P, Losa R, Wallace RJ. 2004. Effects of a specific blend of essential oil compounds on rumen fermentation. Animal Feed Science and Technology, 114(1-4): 105-112. DOI: https://doi.org/ 10.1016/j.anifeedsci.2003.12.006
  • Newbold CJ, López S, Nelson N, Ouda JO, Wallace R J, and Moss AR. 2005. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. British Journal of nutrition, 94(1): 27-35. DOI: https://doi.org/ 10.1079/BJN20051445
  • Newbold CJ ve Rode L. 2006. Dietary additives to control methanogenesis ın the rumen. ınternational congress series. Elsevier, 1293: 138-147. DOI: https://doi.org/10.1016/ j.ics.2006.03.047
  • Nosalewicz M, Brzezinska M, Pasztelan M, Supryn G. 2011. Methane In the environment (a review). Acta Agrophysica, 18(2): 193.
  • Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B, Steinfeld H. 2013. Greenhouse gas emissions from ruminant supply chains a global life cycle assessment. Food and Agriculture Organization of The United Nations, FAO 2013.
  • Patra AK ve Saxena J. 2009. The effect and mode of action of saponins on the microbial populations and fermentation ın the rumen and ruminant production. Nutrition Research Reviews, 22(2): 204-219. DOI: https://doi.org/10.1017/ S0954422409990163
  • Patra AK ve Saxena J. 2010. A new perspective on the use of plant secondary metabolites to ınhibit methanogenesis ın the rumen. Phytochemistry, 71(11-12): 1198-1222. DOI: https://doi.org/10.1016/j.phytochem.2010.05.010
  • Patra AK. 2012. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environmental Monitoring and Assessment, 184(4): 1929-1952. DOI: https://doi.org/10.1007/s10661- 011-2090-y
  • Patra AK, Yu Z. 2012. Effects of essential oils on methane production and fermentation by, abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78(12): 4271-4280. DOI: 10.1128/AEM.00309-12.
  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, PÉpin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420,000 years from the vostok ıce core antarctica. Nature, 399(6735): 429-436. DOI: https://doi.org/10.1038/20859
  • Pimentel M, Gunsalus RP, Rao SSC, Zhang H. 2012. Methanogens ın human health and disease. The American Journal of Gastroenterology Supplements, 1(1): 28. DOI: 10.1038/ajgsup.2012.6
  • Pinares Patiño CS. Hickey SM, Young EA, Dodds KG, MacLean S, Molano G, Sandova E, Kjestrup H, Harland R, Hunt C, Pickering NK, McEwan JC. 2013. Heritability estimates of methane emissions from sheep. Animal, 7: 316-321. DOI: https://doi.org/10.1017/S1751731113000864
  • Ramírez Restrepo CA. ve Barry TN. 2005. Alternative temperate forages containing secondary compounds for ımproving sustainable productivity ın grazing ruminants. Animal Feed Science and Technology, 120(3-4): 179-201. DOI: https://doi.org/10.1016/j.anifeedsci.2005.01.015
  • Ranilla MJ, Morgavi D, Pierre Jouany J. 2004. Effect of time after defaunation on methane production ın vitro. 4. Joint INRARRI Symposium Gut Microbiology, 4. Joint INRA-RRI Symposium Gut Microbiology, Les Ulis, ISSN: 0926-5287. Fransa, 21-24 Haziran 2004, EDP Sciences., 44: 35-36.
  • Russell JB ve Strobel HJ, 1989. Effect of ıonophores on ruminal fermentation. Applied and Environmental Microbiology, 55(1): 1-6. PMCID: PMC184044, PMID: 2650616.
  • Russell JB ve Mantovani HC. 2002. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. Journal of Molecular Microbiology and Biotechnology, 4(4): 347-355. https://www.researchgate.net/publication/11253208
  • Sejian V, Lakritz J, Ezeji T, Lal R. 2011. Forage and flax seed ımpact on enteric methane emission ın dairy cows. Research Journal of Veterinary Sciences, 4(1): 1-8. ISSN: 1819-1908.
  • Stępniewska Z, Przywara G, Bennicelli RP. 2004. Plant response ın anaerobic conditions. Acta Agrophysica, 113(7): 15-21. ISSN:1234-4125.
  • Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S, Bogner J. 2007. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management, 27(9): 1248-1258. DOI: https://doi.org/10.1016/j.wasman.2006.07.018
  • Tamminga S, Bannink A, Dijkstra J, Zom RLG. 2007. Feeding strategies to reduce methane loss ın cattle. Animal Sciences Group, 34: 44. ISSN: 1570-8610.
  • Tokura M, Chagan I, Ushida K, Kojima Y. 1999. Phylogenetic study of methanogens associated with rumen ciliates. Current Microbiology, 39(3): 123-128. DOI: https://doi.org/10.1007/s002849900432
  • Ungerfeld EM, Kohn RA, Wallace RJ, Newbold CJ. 2007. A meta-analysis of fumarate effects on methane production ın ruminal batch cultures. Journal of Animal Science, 85(10): 2556-2563. DOI: https://doi.org/10.2527/jas.2006-674
  • Van Kessel JAS ve Russell JB. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4): 205-210. DOI: https://doi.org/10.1111/j.1574-6941.1996.tb00319.x
  • Van Nevel CJ ve Demeyer DI. 1992. Influence of antibiotics and a deaminase ınhibitor on volatile fatty acids and methane production from detergent washed hay and soluble starch by rumen microbes ın vitro. Animal Feed Science and Technology, 37(1-2): 21-31. DOI: https://doi.org/ 10.1016/0377-8401(92)90117-O
  • Van Zijderveld SM, Gerrits WJ, Apajalahti JA, Newbold JR, Dijkstra J, Leng RA, Perdok HB. 2010. Nitrate and sulfate effective alternative hydrogen sinks for mitigation of ruminal methane production ın sheep. Journal of Dairy Science, 93(12): 5856-5866. DOI: https://doi.org/10.3168/jds.2010- 3281
  • Waghorn GC ve Hegarty RS. 2011. Lowering ruminant methane emissions through ımproved feed conversion efficiency. Animal Feed Science and Technology, 166-167: 291-301. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.019
  • Wall E, Simm G, Moran D. 2010. Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal, 4(3): 366-376. DOI: https://doi.org/10.1017/ S175173110999070X
  • Wallace RJ. 2004. Antimicrobial properties of plant secondary metabolites. Proceedings of The Nutrition Society, 63(4): 621-629. DOI: https://doi.org/10.1079/PNS2004393
  • Weisbjerg MR, Terkelsen M, Hvelplund T, Lund P, Madsen J. 2019. Increased Productivity In Tanzanian Cattle is The Main Approach to Reduce Methane Emission Per Unit of Product. Tanzania Journal of Agricultural Sciences, 18(1):13-21.
  • Wright ADG, Kennedy P, O’Neill CJ, Toovey AF, Popovski S, Rea SM, Pimm CL, Klein L. 2004. Reducing methane emissions ın sheep by ımmunization against rumen methanogens. Vaccine, 22(29-30): 3976-3985. DOI: https://doi.org/10.1016/j.vaccine.2004.03.053
  • Wright ADG, Auckland CH, Lynnvd DH. 2007. molecular diversity of methanogens ın feedlot cattle from ontario and prince edward ısland, canada. Applied and Environmental Microbiology, 73(13): 4206-4210. DOI: 10.1128/AEM.00103-07.
  • Wuebbles DJ, Hayhoe K. 2002. Atmospheric methane and global change. Earth Science Reviews, 57(3-4): 177-210. DOI: https://doi.org/10.1016/S0012-8252(01)00062-9
  • Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, Ferris CP, Kilpatrick DJ. 2010. Mitigation of enteric methane emissions through ımproving efficiency of energy utilization and productivity ın lactating dairy cows. Journal of Dairy Science, 93(6): 2630-2638. DOI: https://doi.org/ 10.3168/jds.2009-2929
  • Zehetmeier M, Baudracco J, Hoffmann H, Heißenhuber A. 2012. Does ıncreasing milk yield per cow reduce greenhouse gas emissions, a system approach. Animal, 6(1): 154-166. DOI: https://doi.org/10.1017/S1751731111001467
  • Zhang CM, Guo YQ, Yuan ZP, Wu YM, Wang JK, Liu JX and Zhu WY. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Animal Feed Science and Technology, 146(3-4): 259-269. DOI: https://doi.org/10.1016/j.anifeedsci.2008.01.005.