Ocimum basilicum L. Bitkisinde Rosmarinik Asit ve Antioksidan Bileşenler İçin Yeşil Ekstraksiyon Koşullarının Deneysel Tasarımı ve Çok Yanıtlı Optimizasyonu

Bu çalışmanın temel amacı, bitkinin polifenolik profilinde etkin önemli bir bileşen olan ve antioksidan, antibakteriyel ve antiviral özellikleri ile öne çıkan rosmarinik asit (RA) ile diğer antioksidan bileşenlerin hidroalkolik çözücü ekstraksiyonuna dayalı bir yöntem geliştirmek ve optimize etmektir. Ekstraksiyon gibi karmaşık süreçleri modellemek ve optimize etmek için yumuşak bilgi işlem tabanlı kemometrik çalışmalara ihtiyaç duyulmaktadır. Bu sebeple yapılan çalışmada, değerli bir tıbbi aromatik bitki kaynağı olan Ocimum bacilicum L.’den biyoaktif RA’in yeşil ve basit bir teknikle ekstraksiyon koşullarını, kemometrik yöntemler kullanılarak modellenmesi ve optimizasyonu sağlanmıştır. Bunun yanı sıra O. basilicum’ da bulunan RA’in potansiyelini, Toplam fenolik madde (TFM) miktarı ve Toplam antioksidan aktivite (TAA) ile değerlendirmek de hedeflenmektedir. Yapılan çalışmada RSM-CCD/dar faktöriyel tasarım kullanılmış, çok yanıtlı optimizasyon Pareto çözümleri yardımıyla çözülmüş ve optimum girdi değişkeni değerlerini belirlemek için İstenebilirlik fonksiyonu kullanılmıştır. Sonuç olarak, O. basilicum L. ekstraksiyonun optimum koşulları; %47,7 EtOH konsantrasyonu, 30,0°C sıcaklık, 77,6 dk ekstraksiyon süresi ve 10 mL/g çözücü/katı oranı bulunmuştur. Optimum koşullar altında elde edilen deneyselsonuçlar TFM, TAA ve RA için sırasıyla 171,46±1,87 mg GAE/g, 4,76±0,32 mg Troloks/mL ve 8,93±0,65 mg/g’dır. Matematiksel modelden tahmin edilen sonuçlarsırasıyla (172,26 mg GAE/g), (4,13 mg Troloks/mL) ve (8,89 mg/g) olarak bulunmuştur.

Experimental Design and Multi- Response Optimization of Green Solvent Extraction Conditions for Rosmarinic Acid and Antioxidant Components in Ocimum basilicum L.

The main purpose of this study is to develop and optimize a method based on the hydroalcoholic solvent extraction of rosmarinic acid (RA) which is an important active component in the polyphenolic profile of the plant and, stands out with its antioxidant, antibacterial, and antiviral properties, and other antioxidant components. Soft computing-based chemometric studies are needed to model and optimize complex processes such as extraction. In this study, the extraction conditions of bioactive RA from Ocimum bacilicum L., a valuable medicinal aromatic plant source, with green and simple technique, were modeled and optimized using chemometric methods. Additionally, it was also aimed to evaluate the potential of RA in O. basilicum with the amount of Total phenolic substance (TFM) and Total antioxidant activity (TAA). In the study, RSM-CCD/small factorial design was used, multi-response optimization was solved with the help of Pareto solutions, and the Desirability function was used to determine the optimum input variable values. As a result, optimum conditions of O. basilicum L. extraction, 47.7% EtOH concentration, 30.0 °C temperature, 77.6 min extraction time, and 10 mL/g solvent/solid ratio were found. Experimental results obtained under optimum conditions were 171.46±1.87 mg GAE/g, 4.76±0.32 mg Trolox/mL, and 8.93±0.65 mg/g for TPC, TAA and RA, respectively. The predicted results from the mathematical model were (172.26 mg GAE/g), (4.13 mg Trolox/mL) and (8.89 mg/g), respectively.

___

  • Alagawany M, Abd El-Hack ME, Farag MR, Gopi M, Karthik K, Malik YS, Dhama K. 2017. Rosmarinic acid: Modes of action, medicinal values and health benefits. In Animal Health Research Reviews 18(2): 167–176. https://doi.org/10.1017/S1466252317000081
  • Carvalho SD, Schwieterman ML, Abrahan CE, Colquhoun TA, Folta KM. 2016. Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Frontiers in Plant Science, 1;7:1328- https://doi.org/10.3389/fpls.2016.01328
  • Castronuovo D, Russo D, Libonati R, Faraone I, Candido V, Picuno P, Andrade P, Valentao P, Milella L. 2019. Influence of shading treatment on yield, morphological traits and phenolic profile of sweet basil (Ocimum basilicum L.). Scientia Horticulturae, 254: 91–98. https://doi.org/10.1016/ j.scienta.2019.04.077
  • Chodzinska A, Zdziennicka A, Janczuk B. 2012. Volumetric and surface properties of short chain alcohols in aqueous solution–air systems at 293 K. Journal of Solution Chemistry, 41: 2226–2245. doi:10.1007/s10953-012-9935-z
  • del Baño MJ, Lorente J, Castillo J, Benavente-García O, del Río JA, Ortuño A, Quirin KW, Gerard D. 2003. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of Agricultural and Food Chemistry, 51(15): 4247–4253. https://doi.org/10.1021/jf0300745
  • Do TH, Truong HB, Nguyen HC. 2020. Optimization of Extraction of Phenolic Compounds from Ocimum Basilicum Leaves and Evaluation of Their Antioxidant Activity. Pharmaceutical Chemistry Journal, 54(2): 162–169. https://doi.org/10.1007/s11094-020-02181-3
  • Dudai N, Nitzan N, Gonda I. 2020. Ocimum basilicum L. (Basil). In J. Novak and W.-D. Blüthner (Eds.), Medicinal, Aromatic and Stimulant Plants. Springer. https://doi.org/10.1007/978- 3-030-38792-1_10
  • Fu L, Xu BT, Xu XR, Gan RY, Zhang Y, Xia EQ, Li HB. 2011. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem, 129: 345-350. doi: 10.1016/j.foodchem. 2011.04.079
  • Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL. 2005. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie, 60(1): 62–65.
  • Jakovljević D, Momčilović J, Bojović B, Stanković M. 2021. The short-term metabolic modulation of basil (Ocimum basilicum l. cv. ‘genovese’) after exposure to cold or heat. Plants, 10(3): 590-606. https://doi.org/10.3390/plants10030590
  • Japón-Luján R, Luque-Rodriguez JM, Luque de Castro MD. 2006a. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A, 1108: 76-82.
  • Kapasakalidis PG, Rastall RA, Gordon MH. 2006. Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues, J. Agric. Food Chem. 54: 4016– 4021.
  • Kintzios S, Makri O, Panagiotopoulos E, Scapeti M. 2003. In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum L.). Biotechnology Letters, 25(5): 405–408. https://doi.org/10.1023/A:1022402515263
  • Kwee EM, Niemeyer ED. 2011. Variations in phenolic composition and antioxidant properties among 15 basil (Ocimum basilicum L.) cultivars. Food Chemistry, 128(4): 1044–1050. https://doi.org/10.1016/j.foodchem.2011.04.011
  • Kwon DY, Kim YB, Kim JK, Park SU. 2020. Production of rosmarinic acid and correlated gene expression in hairy root cultures of green and purple basil (Ocimum basilicum L.). Preparative Biochemistry and Biotechnology, 51(1): 35–43. https://doi.org/10.1080/10826068.2020.1789990
  • Lagha-Benamrouchea S, Madania K. 2013. Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Ind Crops Products, 50: 723-730. doi: 10.1016/ j.indcrop.2013.07.048
  • Lobo V, Patil A, Phatak A, Chandra N. 2010. Free radicals, antioxidants and functional foods: Impact on human health. In Pharmacognosy Reviews 4 (8): 118–126. https://doi.org/10.4103/0973-7847.70902
  • Majdi C, Pereira C, Dias MI, Calhelha RC, Alves MJ, RhourriFrih B, Charrouf Z, Barros L, Amaral JS, Ferreira ICFR. 2020. Phytochemical Characterization and Bioactive Properties of Cinnamon Basil (Ocimum basilicum cv. ‘Cinnamon’) and Lemon Basil (Ocimum x citriodorum). Antioxidants, 9: 369. doi:10.3390/antiox9050369
  • Makri O, Kintzios S. 2008. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. In Journal of Herbs, Spices and Medicinal Plants 13(3) : 123– 150. https://doi.org/10.1300/J044v13n03_10
  • McCue PP, Shetty K. 2004. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia Pacific Journal of Clinical Nutrition, 13(1): 101–106.
  • Moučka F, Nezbeda I. 2011 Water–methanol mixtures with nonLorentz–berthelot combining rules:A feasibility study.Journal of Molecular Liquids, 159: 47–51. doi:10.1016/j.molliq.2010.05.005
  • Pagano I, Sánchez-Camargo A del P, Mendiola JA, Campone L, Cifuentes A, Rastrelli L, Ibañez E. 2018. Selective extraction of high-value phenolic compounds from distillation wastewater of basil ( Ocimum basilicum L.) by pressurized liquid extraction. ELECTROPHORESIS, 39(15): 1884-1891 https://doi.org/10.1002/elps.201700442
  • Sajjadi SE. 2006. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. Daru Journal of Faculty of Pharmacy, 14(3): 128–130.
  • Shahidi F. 2004. Functional foods: Theirrole in health promotion and disease prevention. Journal of Food Science, 69(5): R146–R149. https://doi.org/10.1111/j.1365-2621.2004.tb10727.x
  • Shanaida M, Golembiovska O, Jasicka-Misiak I, Oleshchuk O, Beley N, Kernychna I, Wieczorek P P. 2021. Sedative Effect and Standardization Parameters of Herbal Medicinal Product Obtained from the Ocimum americanum L. Herb. European Pharmaceutical Journal. 1-9. https://doi.org/10.2478/afpuc2020-0015
  • Shanaida M, Kernychna I, Shanaida Y. 2017. Chromatographic analysis of organic acids, amino acids, and sugars in Ocimum Americanum L. Acta Poloniae Pharmaceutica - Drug Research, 74(2): 729–734.
  • Taie HAA, Salama ZAER, Radwan S. 2010. Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(1): 119–127. https://doi.org/10.15835/nbha3813534
  • Teofilović B, Grujić-Letić N, Karadžić M, Kovačević S, Podunavac-Kuzmanović S, Gligorić E, Gadžurić S. 2021. Analysis of functional ingredients and composition of Ocimum basilicum. South African Journal of Botany, 141: 227–234. https://doi.org/10.1016/j.sajb.2021.04.035
  • Uma Devi P, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. 2000. Radiation protection by the Ocimum flavonoids orientin and vicenin: Mechanisms of action.Radiation Research, 154(4): 455–460. https://doi.org/10.1667/0033- 7587(2000)154 [0455:RPBTOF]2.0.CO;2
  • Waterhouse AL. 2001. Unit I1.1: Polyphenolics: Determination of total phenolics. In Current Protocols in Food Analytical Chemistry 6 (1):1–4. https://doi.org/10.1002/0471142913
  • Wildman REC. 2019. Nutraceuticals and Functional Foods. In Handbook of Nutraceuticals and Functional Foods 3–22. https://doi.org/10.1201/9780429195594-1
  • Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. 2005. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. Journal of Agricultural and Food Chemistry, 53(6): 2009–2014. https://doi.org/10.1021/jf0484632
  • Zeković Z, Filip S, Vidović S, Jokić S, Svilović S. 2014. Mathematical modeling of ocimum basilicum L. supercritical CO2 extraction. Chemical Engineering and Technology, 37(12): 2123–2128. https://doi.org/10.1002/ceat.201400322
  • Złotek U, Szymanowska U, Karaś M, Świeca M. 2016. Antioxidative and anti-inflammatory potential of phenolics from purple basil (Ocimum basilicum L.) leaves induced by jasmonic, arachidonic and β-aminobutyric acid elicitation. International Journal of Food Science and Technology, 51(1): 163–170. https://doi.org/10.1111/ijfs.12970
  • Zorić Z, Dragović-Uzelac V, Pedisić S, Kurtanjek Ž, Garofulić I E. 2014. Kinetics of the degradation of anthocyanins, phenolic acids and flavonols during heat treatments of freezedried sour cherry Marasca paste. Food Technology and Biotechnology, 52(1): 101–108.