SELÜLOZ NANOKRİSTALİT(NANOWHISKER) İÇEREN SICAKLIK-SU DUYARLI POLİÜRETAN NANOKOMPOZİT FİLMLERİN ÜRETİMİ VE KARAKTERİZASYONU

Bu çalışmada, yaygın olarak kullanılan şekil hafızalı polimerlerden poliüretana eklenen selüloz nanokristalit (nanowhisker) dolgu maddesi (%5, 10, 20) ile sıcaklığın yanı sıra su/neme duyarlı akıllı nanokompozit filmler üretilmiştir. Kimyasal senteze göre daha ucuz ve kolay olan bu modifikasyonla elde edilen ikinci (su/nem) duyarlılık, termal-mekanik-sulu şekil hafıza test prosedürleri ile ayrıntılı olarak incelenmiştir. Ayrıca, üretilen nanokompozit filmlerde partikül dağılımı ve matris-nanodolgu etkileşimleri SEM, FT-IR ve XRD analizleriyle belirlenmiştir. Elde edilen sonuçlara göre, beklendiği gibi nanodolgu malzemesinin yapının mekanik özelliklerinde iyileşmenin yanı sıra sıcaklık duyarlılığa ek olarak selüloz nanokristalit (nanowhisker) konsantrasyonuyla doğru orantılı artan su/nem duyarlılığını da oluşturduğu tespit edilmiştir.

PRODUCTION AND ANALYSIS OF THERMO-WATER RESPONSIVE POLYURETHANE NANOCOMPOSITES CONTAINING CELLULOSE NANOCRYSTALLITE (NANOWHISKER)

In this study, smart nanocomposite films possessing both thermal and water/moisture responsiveness were produced with addition of cellulose nanocrystallite (nanowhisker) (5, 10 and 20 wt%) as nanofiller material. The water/moisture responsiveness was obtained by this modification which is easier than chemical synthesis of the polymer and dual sensitivity of the produced nanocomposite films were examined in detail by thermo-mechanical-aqueous shape memory test procedures. Additionally, particle distribution and matrix-nanofiller interactions of the produced films were investigated by SEM, FT-IR and XRD analyzes. According to the results, it was found that mechanical properties of the films improved as expected. Moreover, besides thermal sensitivity, water/moisture sensitivity increased proportional to the cellulose nanocrystallite (nanowhisker) concentration.

___

  • Yan, L., Aggie, C., JinLian, H., Jing, L., (2007), Shape Memory Behavior of SMPU Knitted Fabric, Journal of Zhejiang University Science A, 8(5):830-834.
  • Liu, Y., Lu, J., Hu, J., Chung, A., (2013)., Study on the Bagging Behavior of Knitted Fabrics by Shape Memory Polyurethane Fiber, The Journal of The Textile Institute, 104(11), 1230-1236.
  • Jing, L., Hu, J., (2010), Study on the Properties of Core Spun Yarn and Fabrics of Shape Memory Polyurethane, Fibres & Textiles in Eastern Europe, Vol. 18, No. 4(81) pp. 39-42.
  • Mondal, S. (2009), Recent Developments in Temperature Responsive Shape Memory Polymers, Mini-Reviews in Organic Chemistry, 6(2), 114-119.
  • Hu, J., Zhu, Y., Huang, H., & Lu, J. (2012), Recent Advances in Shape-Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications, Progress in Polymer Science, 37(12), 1720-1763.
  • Hu, J. (2007), Shape Memory Polymers and Textiles, Elsevier.
  • Saralegi, A., Fernandes, S.C., Alonso-Varona, A., Palomares, T., Foster, E. J., Weder, C., & Corcuera, M.A., (2013), Shape-Memory Bionanocomposites Based on Chitin Nanocrystals and Thermoplastic Polyurethane with a Highly Crystalline Soft Segment, Biomacromolecules, 14(12), 4475-4482.
  • Behl, M., & Lendlein, A. (2007), Shape-Memory Polymers, Materials Today, 10(4), 20-28.
  • Lv, H., Leng, J., Liu, Y., & Du, S. (2008), Shape‐Memory Polymer in Response to Solution, Advanced Engineering Materials, 10(6), 592-595.
  • Huang, W.M., Yang, B., An, L., Li, C., Chan, Y.S., (2005), Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism, Applied Physics Letters, 86(11), 114105.
  • Yang, B., Huang, W.M., Li, C., Li, L., (2006), Effects of Moisture on the Thermomechanical Properties of a Polyurethane Shape Memory Polymer, Polymer 47(4), 1348-1356.
  • Yang, B., W.M. Huang, C. Li, C.M. Lee, and L. Li, (2004), On the Effects of Moisture in a Polyurethane Shape Memory Polymer, Smart Materials & Structures, 13(1): 91-195.
  • Mather, P. T., Luo, X., & Rousseau, I. A. (2009), Shape Memory Polymer Research, Annual Review of Materials Research, 39, 445-471.
  • Meng, H., & Hu, J. (2010), A Brief Review of Stimulus-Active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli, Journal of Intelligent Material Systems and Structures, 21(9), 859-885.
  • Lendlein, A., & Kelch, S. (2002), Shape‐Memory Polymers, Angewandte Chemie International Edition, 41(12), 2034-2057.
  • Meng, Q., & Hu, J. (2009), A Review of Shape Memory Polymer Composites and Blends, Composites Part A: Applied Science and Manufacturing, 40(11), 1661-1672.
  • Huang, W. M., Yang, B., Zhao, Y., & Ding, Z. (2010), Thermo-Moisture Responsive Polyurethane Shape-Memory Polymer and Composites: A Review, Journal of Materials Chemistry, 20(17), 3367-3381.
  • Gu, X., & Mather, P. T. (2013), Water-Triggered Shape Memory of Multiblock Thermoplastic Polyurethanes (TPUs), RSC Advances, 3(36), 15783-15791.
  • Wang, W., Liu, Y., & Leng, J. (2016), Recent Developments in Shape Memory Polymer Nanocomposites: Actuation Methods and Mechanisms, Coordination Chemistry Reviews, 320, 38-52.
  • http://www.smptechno.com/index_en.html
  • https://www.nanolinter.com/index_tr.html
  • Mondal, S. (2006), Studies of Structure and Water Vapor Transport Properties of Shape Memory Segmented Polyurethanes for Breathable Textiles (Doctoral dissertation, The Hong Kong Polytechnic University).
  • Luo, H. (2012), Study on Stimulus-Responsive Cellulose-Based Polymeric Materials (Doctoral dissertation, The Hong Kong Polytechnic University).
  • Aslan, S., (2017), Şekil Hafızalı Polimer Esaslı Fonksiyonel Tekstil Yapılarının Geliştirilmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Tekstil Mühendisliği Anabilim Dalı, Doktora Tezi, 150s, Isparta.
  • Dagnon, K. L., Way, A. E., Carson, S. O., Silva, J., Maia, J., & Rowan, S. J. (2013), Controlling the Rate of Water-Induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites, Macromolecules, 46(20), 8203-8212.
  • Annamalai, P. K., Dagnon, K. L., Monemian, S., Foster, E. J., Rowan, S. J., & Weder, C. (2014), Water-Responsive Mechanically Adaptive Nanocomposites Based on Styrene-Butadiene Rubber and Cellulose Nanocrystals-Processing Matters, ACS Applied Materials & Interfaces, 6(2), 967-976.
  • Liu, Y., Li, Y., Chen, H., Yang, G., Zheng, X., & Zhou, S. (2014), Water-Induced Shape-Memory Poly (d, l-lactide)/Microcrystalline Cellulose Composites, Carbohydrate Polymers, 104, 101-108.
  • Mendez, J., Annamalai, P. K., Eichhorn, S. J., Rusli, R., Rowan, S. J., Foster, E. J., & Weder, C. (2011), Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect, Macromolecules, 44(17), 6827-6835.
  • Santamaria-Echart, A., Ugarte, L., Arbelaiz, A., Gabilondo, N., Corcuera, M. A., & Eceiza, A. (2016), Two Different Incorporation Routes of Cellulose Nanocrystals in Waterborne Polyurethane Nanocomposites, European Polymer Journal, 76, 99-109.
  • Santamaria-Echart, A., Ugarte, L., García-Astrain, C., Arbelaiz, A., Corcuera, M. A., & Eceiza, A. (2016), Cellulose Nanocrystals Reinforced Environmentally-Friendly Waterborne Polyurethane Nanocomposites, Carbohydrate Polymers, 151, 1203-1209.
  • Memiş, K. N. ve Kaplan, S. (2017), Production and Analysis of Cellulose Nanowhisker Reinforced Thermo-Water Responsive Polyurethane Nanocomposites, 16th International The Recent Progress Smposium on Textile Technology and Chemistry, May 4-5-6 2017, Bursa.
  • Ugarte, L., Santamaria-Echart, A., Mastel, S., Autore, M., Hillenbrand, R., Corcuera, M. A., & Eceiza, A. (2017), An Alternative Approach for the Incorporation of Cellulose Nanocrystals in Flexible Polyurethane Foams Based on Renewably Sourced Polyols, Industrial Crops and Products, 95, 564-573.
  • Kaursoin, J., Agrawal, A.K., (2007), Melt Spun Thermoresponsive Shape Memory Fibers Based on Polyurethanes: Effect of Drawing and Heat-Setting on Fiber Morphology and Properties, Journal of Applied Polymer Science, 103(4), 2172- 2182.
  • Zhu, Y., Hu, J.L., Yeung, L.Y., Lu, J., Meng, Q., Chen, S., Yeung, K., (2007), Effect of Steaming on Shape Memory Polyurethane Fibers with Various Hard Segment Contents, Smart Materials and Structures, 16(4), 969-981.
  • Phinichka, N., & Kaenthong, S. (2017), Regenerated Cellulose from High Alpha Cellulose Pulp of Steam-Exploded Sugarcane Bagasse, Journal of Materials Research and Technology.
  • Tan, L., Hu, J., Ying Rena, K., Zhu, Y., & Liu, P. (2017), Quick Water‐Responsive Shape Memory Hybrids with Cellulose Nanofibers, Journal of Polymer Science Part A: Polymer Chemistry, 55(4), 767-775.
  • Luo, H., Hu, J., & Zhu, Y. (2011), Polymeric Shape Memory Nanocomposites with Heterogeneous Twin Switches, Macromolecular Chemistry and Physics, 212(18), 1981-1986.
  • Zhu, Y., Hu, J., Luo, H., Young, R. J., Deng, L., Zhang, S., & Ye, G. (2012), Rapidly Switchable Water-Sensitive Shape-Memory Cellulose/Elastomer Nano-Composites, Soft Matter, 8(8), 2509-2517.
  • Padsalgikar, A., Cosgriff‐Hernandez, E., Gallagher, G., Touchet, T., Iacob, C., Mellin, L., & Runt, J. (2015), Limitations of Predicting in Vivo Biostability of Multiphase Polyurethane Elastomers Using Temperature‐Accelerated Degradation Testing, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(1), 159-168.
  • Fortunati, E., Luzi, F., Janke, A., Häußler, L., Pionteck, J., Kenny, J. M., & Torre, L. (2017), Reinforcement Effect of Cellulose Nanocrystals in Thermoplastic Polyurethane Matrices Characterized by Different Soft/Hard Segment Ratio, Polymer Engineering & Science, 57(6), 521-530.