POLİVİNİL ALKOL (PVA) NANOLİFLERİN ÜRETİMİNDE YENİLİKÇİ BİR YAKLAŞIM: SANTRİFÜJLÜ LİF ÜRETİMİ

Nanolif üretimi üzerine son yıllarda öne çıkan teknolojilerden birisi de santrifüjlü lif üretimidir. Yaygın olarak kullanılan yöntem olan elektroeğirmeye göre, yüksek hızlarda üretim sağlaması ile endüstriyel uygulamalara uygundur. Bu çalışmada, santrifüjlü lif üretim yöntemiyle biyomedikal uygulamaları, lityum iyon pil elektrotları gibi katma değeri yüksek ürünlerde kullanılabilen polivinil alkol (PVA) nanolifleri üretilmiştir. Üretim parametrelerinin (çözelti konsantrasyonu, iğne çapı, rotor hızı ve iğne-toplayıcı arası mesafe) lif morfolojisine olan etkileri SEM görüntüleri ile incelenmiştir. PVA nanolif üretimi için %10-15 çözelti konsantrasyonu, 6000-9000 d/dk hız, 0,5 mm iğne çapı ve 150 mm civarı i ğne-toplayıcı arası mesafe uygun değerler olarak görülmüştür. Ortalama 200 nm’nin altında çapa sahip nanolifler endüstriyel üretime ölçeklendirilebilir hızlarda üretilmiştir.

A NOVEL APPROACH FOR THE PRODUCTION OF POLY (VINYL ALCOHOL) NANOFIBERS: CENTRIFUGAL SPINNING

One of the emerging technologies for the nanofiber production is “centrifugal spinning”. It is a compatible technique for industrial applications due to higher production rates compared to electrospinning, which is the most widely used method. In this study, poly(vinyl alcohol) nanofibers which are used in high value added products such as biomedical applications and lithium ion battery electrodes were produced via centrifugal spinning. Effect of production parameters (solution concentration, needle diameter, rotor speed and needle-collector distance) on fiber morphology was investigated with SEM images. Optimum conditions were determined as 10-15 wt% solution concentration, 6000-9000 rpm speed, 0.5 mm needle diameter and around 150 mm needle-collector distance. Also, nanofibers with diameters below 200 nm were produced at industrial rates.

___

  • Polat, Y., Pampal, E. S., Stojanovska, E., Simsek, R., Hassanin, A., Kilic, A., Demir, A., Yilmaz, S. (2016), Solution blowing of thermoplastic polyurethane nanofibers: A facile method to produce flexible porous materials, Journal of Applied Polymer Science, 133 (9).
  • Pampal, E. S., Stojanovska, E., Simon, B., & Kilic, A. (2015), A review of nanofibrous structures in lithium ion batteries, Journal of Power Sources, 300, 199–215.
  • Bhullar, S. K., Rana, D., Lekesiz, H., Bedeloglu, A. C., Ko, J., Cho, Y., Ramalingam, M. (2017), Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications, Materials Science and Engineering: C, 81, 334-340.
  • Krifa, M., & Yuan, W. (2015), Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofiber membranes, Textile Research Journal, 86 (12).
  • Cengiz, F., Krucińska, I., Gliścińska, E., Chrzanowski, M., & Goktepe, F. (2009), Comparative analysis of various electrospinning methods of nanofibre formation, Fibres & Textiles in Eastern Europe, (1 (72), 13–19.
  • Mary, L. A., Senthilram, T., Suganya, S., Nagarajan, L., Venugopal, J., Ramakrishna, S., & Giri Dev, V. R. (2013), Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle, Express Polym. Lett, 7 (3), 238–248.
  • Weitz, R. T., Harnau, L., Rauschenbach, S., Burghard, M., & Kern, K. (2008), Polymer nanofibers via nozzle-free centrifugal spinning, Nano letters, 8 (4), 1187–1191.
  • Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., & Zhang, X. (2013), Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process, European Polymer Journal, 49 (12), 3834–3845.
  • Hammami, M. A., Krifa, M., & Harzallah, O. (2013), Centrifugal force spinning of PA6 nanofibers–processability and morphology of solution-spun fibers, The Journal of The Textile Institute, 105, 637-647.
  • Weng, B., Xu, F., Garza, G., Alcoutlabi, M., Salinas, A., & Lozano, K. (2015), The production of carbon nanotube reinforced poly (vinyl) butyral nanofibers by the Forcespinning® method, Polymer Engineering & Science, 55 (1), 81–87.
  • Dev, V. G., Mary, L. A., Senthilram, T., Suganya, S., Nagarajan, L., Venugopal, J., & Ramakrishna, S., Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle, Express Polymer Letters, 7, 238-248.
  • Loordhuswamy, A. M., Krishnaswamy, V. R., Korrapati, P. S., Thinakaran, S., & Rengaswami, G. D. V. (2014), Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology, Materials Science and Engineering: C, 42, 799–807.
  • Fatema, U. K., Uddin, A. J., Uemura, K., & Gotoh, Y. (2011), Fabrication of carbon fibers from electrospun poly (vinyl alcohol) nanofibers, Textile Research Journal, 81 (7), 659–672.
  • Sung, J. H., Hwang, M.-R., Kim, J. O., Lee, J. H., Kim, Y. I., Kim, J. H. (2010), Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan, International journal of pharmaceutics, 392 (1), 232–240.
  • Munir, M. M., Fauzi, A., Nuryantini, A. Y., Sofiari, E., & others. (2015), Optimization of Solvent System and Polymer Concentration for Synthesis of Polyvinyl Alcohol (PVA) Fiber Using Rotary Forcespinning Technique, In Advanced Materials Research, 1123, 20–23.
  • Badrossamay, M. R., McIlwee, H. A., Goss, J. A., & Parker, K. K. (2010), Nanofiber Assembly by Rotary Jet-Spinning, Nano Letters, 10 (6), 2257–2261.
  • Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004), Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning, Journal of Polymer Science Part B: Polymer Physics, 42 (20), 3721–3726.
  • Ren, L., Ozisik, R., & Kotha, S. P. (2014), Rapid and efficient fabrication of multilevel structured silica micro-/nanofibers by centrifugal jet spinning, Journal of Colloid and Interface Science, 425, 136–142.
  • Lu, Y., Li, Y., Zhang, S., Xu, G., Fu, K., Lee, H., & Zhang, X. (2013), Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process, European Polymer Journal, 49 (12), 3834–3845.
  • Mahalingam, S., & Edirisinghe, M. (2013), Forming of Polymer Nanofibers by a Pressurised Gyration Process, Macromolecular Rapid Communications, 34 (14), 1134–1139.
  • Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005), Study on morphology of electrospun poly (vinyl alcohol) mats, European polymer journal, 41 (3), 423–432.
  • Cengiz, F., Dao, T. A., & Jirsak, O. (2010), Influence of solution properties on the roller electrospinning of poly (vinyl alcohol), Polymer Engineering & Science, 50 (5), 936–943.
  • Xu, H., Chen, H., Li, X., Liu, C., & Yang, B. (2014), A comparative study of jet formation in nozzle- and nozzle-less centrifugal spinning systems, Journal of Polymer Science Part B: Polymer Physics, 52 (23), 1547–1559.
  • Padron, S., Fuentes, A., Caruntu, D., & Lozano, K. (2013), Experimental study of nanofiber production through forcespinning, Journal of Applied Physics, 113 (2).
  • Weitz, R. T., Harnau, L., Rauschenbach, S., Burghard, M., & Kern, K. (2008), Polymer Nanofibers via Nozzle-Free Centrifugal Spinning, Nano Letters, 8 (4), 1187–1191
  • Zander, N. E. (2015), Formation of melt and solution spun polycaprolactone fibers by centrifugal spinning, Journal of Applied Polymer Science, 132 (2).
  • Yanilmaz, M., & Zhang, X. (2015), Polymethylmethacrylate/ Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries, Polymers, 7 (4), 629–643.
  • Zhang, X., & Lu, Y. (2014), Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost, Polymer Reviews, 54 (4), 677–701