Hydraulic simulation of rainfall-runoff process in kamanaj watershed using diffusive model

Bu çalışmada, İran’ın Doğu Azerbaycan Bölgesinde bulunan Ajichay nehrinin bir alt havzası olan Kamanaj havzasında, iki boyutlu SV eşitlikleri kullanılarak yağışların yüzey akışına dönüşmesi simüle edilmiştir. Zaman ve mekan analizleri için yağış-yüzey akışı infiltrasyon oranlarının dikkate alınmasıyla simüle edilmiştir. SV eşitlikleri, Kesin Fark Numerik metodu ile başlangıç ve sınır koşulları saptanarak çözülmüştür. Bu amaçla, havza alanı GIS araçları yardımı ile sayısal yükseklik haritaları elde etmek amacıyla 250x250 metrekararelere bölünmüştür. İnfiltrasyon verilerini ölçmek için, en iyi uyum gösteren model olan Kostiokov infiltrasyon sistemi seçilmiş ve SV eşitlikleri uygulanmıştır. Modeli doğrulamak amacıyla, üç hidrografik kullanılmıştır. Simüle edilen ve gözlenen hidrografikler, yağış-yüzeyakışı simülasyon modelinin etkinliğini doğrulamıştır. Sunulan bu model, anlık yağışlardan oluşan yüzey akışının belirlenmesinde, havzadaki infiltrasyonun zamansal ve mekansal değişimine dikkat edilerek kullanılabilir. Bu model aynı zamanda, havzadaki boşaltımın tepe noktasını ve boşaltımın en fazla olduğu zamanı tahmin etmede kullanılabilir.

Kamanaj havzasında yağışlara bağlı yüzey akışı oluşumunun dağılma modeli yardımıyla hidrolik simülasyonu

In this research the transformation of rainfall into runoff was simulated using two dimensional SV equations in the Kamanaj watershed, a subwatershed of Ajichay river, located in East Azarbaijan Province, Iran. Rainfall-runoff was simulated based on a diffusive model by considering momentary infiltration rate for temporal and spatial analysis. SV equations were solved using explicit method of finite difference numerical technique as the initial and boundary conditions were defined. For this purpose, the watershed area was divided into a grid size of 250m×250m by the tools of GIS leading to prepare digital elevation map. Kostiokov infiltration, as the best fitted model, was selected to measure infiltration data and applied in SV equations. Three hydrographs were used to verify the model. Comparison of the simulated and observed hydrographs verificated the capability of model in simulating the rainfall-runoff. The presented model can be used for determination of runoff from momentary rainfall with consideration of temporal and spatial variation of infiltration over the watersheds.This model can also be used to forcast the peak discharge and time to peak in watershed outlet.

___

  • Brouner, I. H.1992. Subsurface water. ITC Postgradute Course in Water Resources.
  • Chow, V.T., D.R. Maidment and L.W. Mays. 1988 . Applied hydrology. Mc Graw Hill , International Editions.
  • Doe, W.W., B. Saghafian and P.Y. Julien. 1996. Land-use impact on watershed response: The integration of two-dimensional hydrological and geographical information systems. Hydrological Processes 10: 1503-1511.
  • Hjelmfelt, A.T.1978. Influence of infiltration on overland flow. Journal of Hydrology 36: 179-185.
  • Julien, P.Y., B. Saghafian and F.L. Ogden. 1995. Raster- Based hydrological modeling of spatially- varied surface. Water Resources Bulletin 31(3): 523-536.
  • Johnson, B.E. et al. 2000 . The two-dimensional upland erosion model Casc2d--Sed. Journal of American Water Resources Association 36 (1): 31-42.
  • Jorgeson, J. and P.Y. Julien. 2005. Peak flow forecasting with radar precipitation and distrbuted model casc2d. International Water Resources Association 30 (1): 40-49.
  • Kull, D.W. and A.D. Feldman. 1998. Evaluation of clark’s unit graph method to spatially distributed runoff. Journal of Hydrology Engineering 3 (1): 9-19.
  • Moussa, R and C. Bocquillon. 2000 . Approximation zones of the Saint-Venant equations for flood routing with overbank flow. Hydrology and Earth System Sciences 4 (2): 251-261
  • Molnar, D.K. and P.Y. Julien. 2000. Grid-Size effects on surface runoff modeling. Journal of Hydrologic Engineering 5 (1).
  • Ogden, P.L. and P.Y. Julien. 1993. Runoff sensivity to temporal and spatial rainfall variability at runoff plane and small basin scales. Water Resources Research 29 (8): 2589-2597.
  • Ponce, V.M. 1989. Engineering hydrology, Principle and Practice, Printice Hall.
  • Saghafian, B., P.Y. Julien and H.M. Rajaie. 2000. A spatial travel-time method for watershed routing. 4th International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs ,september 2-8, Banff, Alberta,
  • Canada. Saghafian, B. and P.Y. Julien.1995. Time to equilibrium for spatially variable watersheds. Journal of Hydrology 172: 231-293.
  • Tarboton, D.C. 2000. Watershed and stream network delineation. University of Padua.