Dört boyutlu Ising model için bilinen sonlu örgü ölçekleme ve logaritmik düzeltmeli sonlu örgü ölçekleme fonksiyonlarının incelenmesi

Dört boyutlu Ising modelinin, doğrusal boyutu L =4,6,8,10,12,14,16 olan periyodik sınır şartlı soyut basit küp örgülerde, dört "bit"li demonlar kullanılarak Creutz cellular automaton'ında simülasyonu yapıldı. Simülasyondan elde edilen veriler bilinen sonlu örgü olçekleme teorisi ve logaritmik düzeltmeli sonlu örgü olçekleme teorisine göre analiz edildi. Manyetik alınganlık için kritik üs logaritmik düzeltme olmaksızın $frac{gamma}{nu}$= 2.2529 logaritmik düzeltmeli $frac{gamma}{nu}$ = 2.0057, özısı için kritik üs logaritmik düzeltme olmaksızın $frac{alpha}{nu}$-0.0715 logaritmik düzeltmeli $frac{alpha}{nu}$= 0.0932 $frac{alpha}{nu}$= -0.1055 elde edildi. Bu sonuçlar üç "bit"li demonlar kullanılarak yapılan simülasyon sonuçları ve teorik değerlerle uyum halindedir.

Investigation of the well know finite-size scaling function and finite-size scaling functions with logarithmic correction for the four dimensional Ising model

The four-dimensional nearest-neighbor Ising model is simulated on the Creutz cellular automaton by using four-bit demons and the finite-size lattices with the linear dimension L=4,6,8,10,12,14,16. The simulation results for the finite-lattice are analyzed according to the conventional finite-size scaling theory with and without logarithmic factors. Critical exponents of the magnetic susceptibility $(chi)$ is found as $frac{gamma}{nu}$= 2.0057 when the expression with the logarithmic factor is used and as $frac{gamma}{nu}$ — 2.2529 when the expression without logarithmic factor is used. Similarity, the exponents for the specific heat (C) are calculated as $frac{alpha}{nu}$ = 0.0932, $frac{alpha}{nu}$ =-0.1055 with the logarithmic factor and $frac{alpha}{nu}$ = —0.0715 without logaritmic factor.These results are in good agreement with the results of simulations with three-bit demons and theoretical values.

___

[1] Vichniac, G.Y. “Simulating physics with Cellular Automata” Physica D. 10:96- 116(1984).

[2] Pomeau, Y. “Invariant in Cellular Automata” J.Phys.A.17:L415-L418(1984).

[3] Zabolitzky, J.G.,Hermann, H.J. “Multitasking case study on the Cray-2:The Q2R Cellular Automaton” J.Comput.Phys.76:426-447(1988).

[4] Pires, A., Landau, D.P. Hermann, H. “Computational Physics And Cellular Automata” World Scientific(1989).

[5] Hermann, H.J. “Fast algorithm for the simulation of Ising models” J.Stat.Phys. 45:145- 151(1986).

[6] Hermann, H.J., Carmesin, H.O.,Stauffer, D. “Periods and Clusters in Ising Cellular Automata” J.Phys.A. 20:4939-4948(1987).

[7] Lang, W.M.,Stauffer, D. “Test of three-dimensional Q2R Ising algorithm” J.Phys.A 20:5413- 5415(1987).

[8] Pomeau Y., and Vichniac G.Y. “Extensions of Q2R: Potts Model and other lattices” J.Phys.A,Math.Gen.21:3297-3299(1988).

[9] Schulte, M., Stiefelhagen W.,Demme, E.S. “Period in the Chaotic Phase of Q2R Automata” J.Phys.A.Math.Gen.20:L1023-1025(1987).

[10] Creutz, M. “Deterministic Ising Dynamics” Ann.Phys.167:62-72(1986).

[11] Kutlu, B., Aktekin, N. “Computation of Critical exponent for two-Dimensional Ising model on a Cellular Automaton” J.Stat.Phys. 75:757-763(1994).

[12] Kutlu, B., Aktekin, N. “Critical slowing down in Ising model for Creutz algorithm” Physica A. 208:423-(1994).

[13] Kutlu, B., Aktekin, N. “Computation functions of the two dimensional Ising model” Physica A. 215:370-377(1995).

[14] Kutlu, B. “Critical behavior of the two-dimensional Ising model with next-nearest-neighbor antiferromagnetic interaction, Physica A. 234:807-818(1997).

[15] Kutlu, B. “Critical exponents of the two-dimensional Ising model with next-nearest-neighbor and four-spin interaction on the Creutz Cellular Automaton” Physica A. 243:199-212(1997).

[16] Aktekin, N. “Simulation of the three- dimensional Ising model on the Creutz Cellular Automaton” Physica A. 219:436- 446(1995).

[17] Aktekin, N. “Simulation of the four-dimensional Ising model on the Creutz Cellular Automaton” Physica A. 232: 397-407(1996).

[18] Aktekin, N., Günen, A., Sağlam, Z. “A finite-size scaling study of the four-dimensional Ising model on the Creutz Cellular Automaton” Int.J.Mod.Phys.C. 10; 875-881(1999).

[19] Aktekin, N. “The finite-size scaling functions of the four-dimensional Ising model” J.Stat.Phys.104:1397- 1406(2001).

[20] Aktekin, N. “Effect of the number of energy levels of a demon on the simulation of the Ising model in five to seven dimensions on the Creutz Cellular Automaton” Int.J.Mod.Phys. C.10:621-633(1999).

[21] Aktekin, N.Erkoç, Ş., Kalay, M. “The test of the finite-size scaling relations for the fivedimensional Ising model on the Creutz Cellular Automaton” Int.J.Mod.Phys. C. 10:1237- 1245(1999).

[22] Aktekin, N., Erkoç, Ş. “The test of the finite-size scaling relations for the six-dimensional Ising model on the Creutz Cellular Automaton” Physica A. 284:206-214(2000);

[23] Aktekin, N., Erkoç, Ş. “The test of the finite-size scaling relations for the seven-dimensional Ising model on the Creutz Cellular Automaton” Physica A. 290:123-130(2001).

[24] Aktekin, N. “ Simulation of the eight-dimensional Ising model on the Creutz Cellular Automaton” Int.J.Mod.Phys. C. 8: 287-292(1997).

[25] Aktekin, N., “The Simulation of the Ising Model on the Creutz Cellular Automaton, Annual Reviews of Computational Physic VII”, edited by D.Stauffer, World Scientific, Singapore,1- 23,(2000).

[26] Merdan, Z. and Aktekin, N.“The simulation of the six-dimensional ising model on the Creutz cellular automaton”, Balkan phys.Lett.10(2),95-101,(2002).

[27] Günen, A. “ Dört Boyutlu Ising model için sonlu örgü ölçekleme fonksiyonlarının tespiti” Gazi Üniversitesi Fen Bilimleri Enstitüsü.15:647-655(2002).

[28] Privman, V., Fisher, M.E. “Universal critical amplitudes in finite-sice scaling”Phys. Rev. B.30:322-327(1984).

[29] Privman, V., “Finite Size Scaling and Numerical Simulation of Statistical Systems”, World Scientific, Singapore,(1991).

[30] Landau, D.P. “Finite-size behavior of the simple-cubic Ising lattice” Phys.Rev.B.14: 255- 262(1976).

[31] Rudnick, J., Guo, H., Jasnow, D., “Finite-size scaling and the renormalization group”, J.Stat.Phys., 41, 353-373,(1985).

[32] Kenna, R., Lang, C.B. “Finite size scaling and the zeroes of the partition function in the 4 4 f model” Phys.Lett.B. 264:396-400(1991).

[33] Kenna, R., Lang, C.B., “Renormalization group analysis of finite size scaling in the 4 4 f model”, Nucl.Phys. B., 393, 461-479,(1993).

[34] Stauffer, D. and Adler, J. “Logaritmic Factors, Critical Temperature and Zero Temperature Flipping in the 4D Kinetic Ising Model”, Int.J.Mod.Phys.C 8,263,(1997).

[35] Gaunt,D.S., Skyes M.F. and S.McKenzie, S. “Susceptibility and fourth-field derivative of the spin- 1/2 Ising model for TTc and d=4” J.Phys A. 12:871-877(1979).

[36] Binder, K.,Nauenberg, M., Privman, V., Young, A.P., “Finite-size test of hyperscaling”, Phys.Rev.B., 31, 1498-1502,(1985).