NÖROPSİKİYATRİK HASTALIKLARDA YENİ NESİL SEKANS TEKNOLOJİSİNİN KULLANIMI VE GÜNCEL YAKLAŞIMLAR

Geçtiğimiz yirmi yıl içerisinde psikiyatrik hastalıkların genetik temelinin anlaşılmasında olağanüstü gelişmeler yaşanmıştır. Bu alandaki gelişmeler bu hastalıkların altında yatan mekanizmalar ve bunlarla ilişkili genlerle ilgili önemli bakış açıları sağlamıştır. DNA dizileme teknolojilerindeki ilerlemeler sayesinde insan hastalıklarıyla ilgili birçok gen tanımlanabilmiştir. Ancak, nöropsikiyatrik bozuklukların altında yatan mekanizmalar halen bilinmezliklerini korumaktadır. Günümüz biyomedikal araştırmaların temel amaçlarından birisi de bu tip kompleks hastalıkların genetik etiyolojilerini ortaya çıkarmaktır. Yeni nesil sekans teknolojileri tüm genom veya tüm ekzonları sekanslayarak kompleks hastalıklardan sorumlu olabilecek genetik altyapıyı anlamamızı kolaylaştıracak güçlü bir araç olarak kullanılmaktadır. Bu teknoloji sayesinde dizileme işlemi geniş kapsamlı olarak hem düşük maliyetli hem de hızlı bir şekilde uygulanabilmektedir. Bu özellikleri nedeniyle de giderek daha yaygın kullanım alanına sahip olmaktadır. Yeni nesil sekanslama uygulamalarının yaygınlaşması ile elde edilecek bulgular, sadece nöropsikiyatrik hastalıkların değil diğer kompleks hastalıkların patogenezinin anlaşılmasını da kolaylaştıracaktır. Bu derleme depresif bozukluk, şizofreni ve bipolar bozukluk gibi kompleks nöropsikiyatrik hastalıkların genetik temellerinin anlaşılmasında yeni nesil dizi teknolojilerinin uygulamalarına odaklanmaktadır.

NEXT GENERATION SEQUENCING AND CURRENT APPROACHES IN NEUROPSYCHIATRIC DISEASES

There have been extraordinary advances in understanding the genetic basis of psychiatric disorders in the past two decades. Developments in this area have provided important insights into the underlying mechanisms and the genes associated with these diseases. With the advances in DNA sequencing technology many genes related to human diseases have become identifiable. However, the mechanisms are still unknown in neuropsychiatric disorders. Today, one of the purposes of the biomedical researches is to uncover the genetic etiology of such complex diseases. The next generation sequencing technologies have been used as a powerful tool for understanding the genetic etiology which is responsible for complex diseases by sequencing whole genome or all exons. Sequencing process can be performed both low cost and quickly with this technology. Due to these features, it has increasingly been used nowadays. Results obtained from the next generation sequencing will facilitate understanding not only the pathogenesis of neuropsychiatric diseases but also of other complex diseases. This review focused on the application of next generation sequencing technology for understanding of the genetic basis of complex neuropsychiatric diseases such as depressive disorder, schizophrenia and bipolar disorder.

___

  • 1. Üstek D, Abacı N, Sırma S, ve ark. Yeni nesil DNA dizileme. İstanbul Üniversitesi 2011; 1:11-18.
  • 2. Voelkerding K, Dames S, Durtschi J. Nextgeneration sequencing: From basic research to diagnostics. Clinical Chemistry 2009; 55: 641-658.
  • 3. Rabbani B, Mahlideh N, Hosomichi K, et al. Nextgeneration sequencing: Impact of exome sequencing in characterizing Mendelian disorders. Journal of Human Genetics 2012; 57:621-632.
  • 4. Chi KR. The year of sequencing. Nature Methods 2008; 5:11-14.
  • 5. Fischbach GD, Lord C. The simons simplex collection: A resource for ıdentification of autism genetic risk factors. Neuron 2010; 68:192-195.
  • 6. Kato T. Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry and Clinical Neurosciences 2014; 69:65-76.
  • 7. Persico AM, Napolioni V. Autism genetics. Behav Brain Res 2013; 251:95-112.
  • 8. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics 2014; 59:5-15.
  • 9. Need AC, Shashi V, Hitomi Y, et al. Clinical application of exome sequencing in undiagnosed genetic conditions. Med Genet 2012; 49:353-361.
  • 10. Morris JA, Barrett JC. Olorin: Combining gene flow with exome sequencing in large family studies of complex disease. Advance Access Publication 2012; 28:3320-3321.
  • 11. Gilissen C, Hoischen A, Brunner HG, et al. Unlocking Mendelian disease using exome sequencing. Genome Biology 2011; 12:228.
  • 12. Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12:745-755.
  • 13. Choia M, Scholla UI, Jia W, et al. Genetic Diagnosis by whole exome capture and massively parallel DNA sequencing. PNAS 2009; 106:19096-19101.
  • 14. Gilissen C, Hoischen A, Brunner HG, et al. Disease gene ıdentification strategies for exome sequencing. European Journal of Human Genetics 2012; 20:490-497.
  • 15. Arısoy Ö. Psikiyatrik genetik. Düşünen Adam 2004; 17:109-125.
  • 16. Gauthier J, Rouleau GA. De novo mutations in neurological and psychiatric disorders: Effects, diagnosis and prevention. Gauthier and Rouleau Genome Medicine 2012; 4:71.
  • 17. Yang Y, Muzny DM, Xia F,et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 2014; 312:1870-1879.
  • 18. Belkadi A, Bolze A, Itan Y, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci 2015; 112:5473-5478.
  • 19. Ng SB, Turner EH, Robertson PD, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461:272-276.
  • 20. Bentley DR, Balasubramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456:53-59.
  • 21. Ligt J, Boone PM, Fundt RP, et al. Detection of clinically relevant Copy Number Variants with whole-exome sequencing. Hum Mutat 2013; 34:1439-1448.
  • 22. Buxbaum JD, Daly MJ, Devlin B, et al. The autism sequencing consortium: Large scale, high throughput sequencing in autism spectrum disorders. Neuron 2012; 76:1052-1056.
  • 23. Samuels ME, Hasselmann C, Deal C, et al. Wholeexome sequencing: Opportunities in pediatric endocrinology. Personalized Medicine 2014; 11:63 -78.
  • 24. Poultney CS, Goldberg AP, Drapeau E, et al. Identification of small exonic CNV from wholeexome sequence data and application to autism spectrum disorder. The American Society of Human Genetics 2013; 93:607-619.
  • 25. Gauthier J, Rouleau GA. De novo mutations in neurological and psychiatric disorders: Effects, Diagnosis and Prevention. Genome Medicine 2012, 4:71.
  • 26. Veeramah KR, Johnstone L, Karafet TM, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54:1270-1281.
  • 27. Biesecker LG, Burke W, Kohane I, et al. Next generation sequencing in the clinic: Are we ready? Nat Rev Genet 2012; 13:818-824.
  • 28. Toft T, Fink P, Ornbol E, et al. Mental disorders in primary care: Prevalence and co-morbidity among disorders: Results from the functional illness in primary care (FIP) study. Psychol Med 2005; 8:1175-1184.
  • 29. Yavuz R. Şizofreni. İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri Türkiye'de sık karşılaşılan psikiyatrik hastalıklar sempozyum dizisi 2008; 62:49-58.
  • 30. Han G, Sun J, Wang J, et al. Genomics in neurological disorders. Genomics Proteomics Bioinformatics 2014; 12:156-163.
  • 31. Gaebel W, Zielasek J. Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry and Clinical Neurosciences 2015; 69:661-673.
  • 32. Fryers T, Brugha T. Childhood determinants of adult psychiatric disorder. Clin Pract Epidemiol Ment Health 2013; 9:1-50.
  • 33. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature Reviews Neuroscience 2006; 7:818-827.
  • 34. Schreiber M, Dorschner M, Tsuang D. Nextgeneration sequencing in schizophrenia and other neuropsychiatric disorders. Amerıcan Journal of Medıcal Genetıcs 2013; 162:671-678.
  • 35. Bras J, Guerreiro R, Hardy J. Use of Nextgeneration sequencing and other whole-genome strategies to dissect neurological disease. Neuroscıence 2012; 13:453-464.
  • 36. Ezewudo M, Zwick ME. Evaluating rare variants in complex disorders using next generation sequencing. Curr Psychiatry Rep 2013; 15:349.
  • 37. Arıcıoğlu F, Çetin M. Psikiyatride Bireye Özgü Tedavi: Belki biraz eski veya biraz yeni, ama geleceğin tedavisi. Klinik Psikofarmakoloji Bülteni 2010; 20:269-273.
  • 38. www.who.int/whr/2001/chapter2/.../index4.html.
  • 39. Kotan Z, Sarandöl A, Eker SS, et al. Depresyon, nöroplastisite ve nörotrofik faktörler. Psikiyatride Güncel Yaklasımlar-Current Approaches ın Psychıatry 2009; 1:22-35.
  • 40. Çiftçi H, Yıldız E, Mercanlıgil SM. Depresyon ve beslenme tedavisi. Turkiye Klinikleri J Med Sci 2008; 28:369-377.
  • 41. Yavuz R. İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri. Depresyon, somatizasyon ve psikiyatrik aciller sempozyumu 1999; 29-34.
  • 42. Noble RE. Depression in women. Metabolism 2005; 54:49-52.
  • 43. Colman I, Polubidis GB, Wadsworth ME, et al. A Longitudinal typology of symptoms of depression and anxiety over the life course. Biol Psychiatry 2007; 62:1265-1271.
  • 44. Chahrour MH, Yu TW, Elaine T, et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS Genet 2012; 8: e1002635.
  • 45. Köroğlu E. Psikonozoloji-tanımlayıcı klinik psikiyatri. HYB Yayıncılık 2004; 253-277.
  • 46. Ertan T. Psikiyatrik Bozuklukların Epidemiyolojisi. İ.Ü. Cerrahpaşa Tıp Fakültesi Sürekli Tıp Eğitimi Etkinlikleri. Türkiye'de sık karşılaşılan psikiyatrik hastalıklar sempozyum dizisi 2008; 62:25-30.
  • 47. Dalton VS, Kolshus E, McLoughlin DM. Epigenetics and depression: Return of the repressed. J Affect Disord 2014; 155:1-12.
  • 48. Verbeek EC, Bevova MR, Bochdanovits Z, et al. Resequencing three candidate genes for major depressive disorder in a Dutch Cohort. PLoS One 2013; 8:e79921.
  • 49. Cai N, Bigdeli TB, Kretzschmar W, et al. Sparse whole genome sequencıng identifies two loci for major depressıve disorder. Nature 2015; 523:588- 591.
  • 50. Lekman M, Laje G, Charney D, et al. The FKBP5- gene in depression and treatment responses - an association study in the sequenced treatment alternatives to relieve depression (STAR*D) cohort. Biol Psychiatry 2008; 63:1103-1110.
  • 51. Ellswortha KA, Moona I, Eckloffb BW, et al. FKBP5 genetic variation: Association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder. Pharmacogenet Genomics 2013; 23:156-166.
  • 52. Tammiste A, Jiang T, Fischer K, et al. A Wholeexome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. J Psychopharmacol. 2013; 27:915-920.
  • 53. Escudero I, Johnstone M. Genetics of schizophrenia. Curr Psychiatry Rep 2014;16:502.
  • 54. Guipponi M, Santoni FA, Setola V. Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS One 2014; 9:e112745.
  • 55. Rodriguez-Murillo L, Gogos JA, Karayiorgou M. The Genetic architecture of schizophrenia: New mutations and emerging paradigms. Annu Rev Med 2012; 63:63-80.
  • 56. Greenwood TA, Lazzeroni LC, Calkins ME, et al. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophr Res 2016; 170:30-40.
  • 57. Lonita-Laza I, Xu, B, Makarov V, et al. Scan statisticbased analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. Proc Natl Acad Sci 2014; 111:343-348.
  • 58. Jablensky A. Epidemiology of Schizophrenia: The global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 2000; 250:274-285.
  • 59. Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry 2003; 160:636-645.
  • 60. Girard SL, Gauthier J, Noreau A, et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43:860-863.
  • 61. Xu B, Roos JL, Dexheimer P, et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43:864-868.
  • 62. Vissers LE, de Ligt J, Gilissen C, et al. A de novo paradigm for mental retardation. Nat Genet 2010; 42:1109-1112.
  • 63. O'Roak BJ, Deriziotis P, Lee C, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43:585-589.
  • 64. Need AC, McEvoy JP, Gennarelli M, et al. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 2012; 91:303-312.
  • 65. Guipponi M, Santoni FA, Setola V, et al. Exome sequencing in 53 Sporadic Cases of schizophrenia identifies 18 putative candidate genes. PLoS One 2014; 9:e112745.
  • 66. Takata A, Xu B, Ionita-Laza I, et all. Loss-of-function variants in schizophrenia risk and SETD1A as a candidate susceptibility gene. Neuron 2014; 82:773-780.
  • 67. Purcell SM, Moran JL, Fromer M, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014; 506:185-190. 68. Shprintzen RJ. Velo-cardio-facial syndrome. Genetics of Pediatric Heart Disease 2005;20:187- 193.
  • 69. Merico D, Zarrei M, Costain G, et al. Whole-genome sequencing suggests schizophrenia risk mechanisms in Humans with 22q11.2 Deletion Syndrome. Genomes 2015; 5:2453-2461.
  • 70. Anderson IM, Haddad PM, Scott J. Bipolar disorder. BMJ 2012; 345:e8508.
  • 71. Kronfol Z, Zakaria Khalil M, Kumar P, et al. Bipolar disorders in the Arab world: a critical review. Ann N Y Acad Sci 2015;1345:59-66.
  • 72. Bauer M, Pfennig A. Epidemiology of Bipolar Disorders. Epilepsia 2005; 46:8-13.
  • 73. Akdemir D, Gökler B. Bipolar duygudurum bozukluğu olan anne babaların çocuklarında psikopatoloji. Türk Psikiyatri Dergisi 2008; 19:133-140.
  • 74. Chen YC, Carter H, Parla J, et al. A hybrid likelihood model for sequence-based disease association studies. PLoS Genet 2013; 9:e1003224.
  • 75. Cruceanu C, Ambalavanan A, Spiegelman D, et al. Family-based exome-sequencing approach identifies rare susceptibility variants for lithiumresponsive bipolar disorder. Genome 2013; 56:634 -640.
  • 76. Shinozaki G, Potash JB. New developments in the genetics of bipolar disorder. Curr Psychiatry Rep 2014; 16:493.
  • 77. Georgi B, Craig D, Kember RL, et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet 2014;10:e1004229.
  • 78. Fiorentino A, O'Brien NL, Locke DP, et al. Analysis of ANK3 and CACNA1C variants identified in bipolar disorder whole genome sequence data. Bipolar Disord 2014;16:583-591.
  • 79. Ansorge WJ. Next-generation DNA sequencing techniques. New biotechnology 2009; 25:195-203.
  • 80. Morris JA, Barrett JC. Olorin: Combining gene flow with exome sequencing in large family studies of complex disease. Advance Access Publication 2012; 28:3320-3321.