YÜKSEK ENTROPİLİ ALAŞIMLAR: PRENSİPLER VE ALAŞIM TASARIMI

Çoğu geleneksel alaşım tek bir element üzerinde kurulmaktadır. Farklı türlerdeki alaşım elementleri bu ana element üzerine özellikleri geliştirmek amacıyla eklenir ve böylece tek bir ana element üzerinde dayanan alaşım aileleri oluşturulur. Yüksek entropili alaşımlarda farklı olarak alaşımlar beş veya daha fazla ana element içerirler. Yüksek entropi kavramı, sadece bir baskın öğeye dayanan klasik alaşımlama yaklaşımı ile elde edilemeyen benzersiz özelliklere sahip gelişmiş malzemeler geliştirmenin yeni bir yolunu ortaya koymaktadır. Bu makale, çekirdek etkileri, fazlar ve kristal yapıları, mekanik özellikler, notasyon ve üretim teknikleri de dahil olmak üzere YEA’ların bazı önemli yönlerini açıklamaktadır.

HIGH ENTROPY ALLOYS: PRINCIPLES AND ALLOY DESIGN

Most conventional alloys are based on one principal element. Different types of alloying elements are added to the principal element to improve its properties, forming an alloy family based on the principal element. Unlike this, High-entropy alloys (HEAs) are alloys with five or more principal elements. The concept of high entropy introduces a new way of developing advanced materials with unique properties that cannot be achieved by a classical alloying approach based on one dominant element. This paper describes some important aspects of HEAs including core effects, phases and crystal structures, mechanical properties, notations, process techniques.

___

  • [1] Yong Zhang, Ting Ting Zuo, Zhi Tang, Michael C. Gao, Karin A. Dahmen, Peter K. Liaw, Zhao Ping Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science 61, 1–93, 2014.
  • [2] Niraj Nayan, Gaurav Singh, S.V.S.N. Murty, Abhay K. Jha, Bhanu Pant, Koshy M. George, Upadrasta Ramamurty, Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics 55, 145-153, 2014.
  • [3] Hsuan-Ping Chou, Yee-Shyi Chang, Swe-Kai Chen, Jien-Wei Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering B, 163(3), 184-189, 2009.
  • [4] V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situXRD analysis, Surface & Coatings Technology 204, 1989–1992, 2010.
  • [5] Yong Dong, Yiping Lu, Jiaorun Kong, Junjia Zhang, Tingju L, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, Journal of Alloys and Compounds 573, 96–101, 2013.
  • [6] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.
  • [7] Ming-Hung Tsai, Jien-Wei Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett., Vol. 2, No. 3, 107–123, 2014.
  • [8] P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, Chi Lee, Che-Wei Tsai, Jien-Wei Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, Journal of Alloys and Compounds 587, 544–552, 2014.
  • [9] V. Braic, M. Balaceanu, M. Braic, A. Vladescu, S. Panseri, A. Russo, Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications, Journal Of The Mechanıcal Behavıor Of Bıomedıcal Materıals 10, 197 – 205, 2012.
  • [10] J. B. Cheng • X. B. Liang • Z. H. Wang • B. S. Xu, Formation and Mechanical Properties of CoNiCuFeCr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma Chem Plasma Process 33, 979–992, 2013.
  • [11] J.B. Cheng, X.B. Liang, B.S. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surface & Coatings Technology 240, 184–190, 2014.
  • [12] Ming-Hao Chuang, Ming-Hung Tsai, Che-Wei Tsai, Nai-Hao Yang, Shou-Yi Chang, Jien-Wei Yeh, Swe-Kai Chen, Su-Jien Lin, Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy, Journal of Alloys and Compounds 55, 112–18, 2013.
  • [13] V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, P. Gillon, Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy, Materials Chemistry and Physics 117, 142–147, 2009.
  • [14] Wei-Hong WU, Chih-Chao YANG, and Jien-Wei YEH, Industrıal Development Of Hıgh-Entropy Alloys, Annales De Chimie – Science des Materiaux, 31, 737-747, 2006.
  • [15] Shin-Tsung Chen, Wei-Yeh Tang, Yen-Fu Kuo, Sheng-Yao Chen, Chun-Huei Tsau, Tao-Tsung Shun, Jien-Wei Yeh, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Materials Science and Engineering A 527, 5818–5825, 2010.
  • [16] Weiping Chen, Zhiqiang Fu, Sicong Fang, Huaqiang Xiao, Dezhi Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Materials and Design 51, 854–860, 2013.
  • [17] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science 52, 2571–2581, 2010.
  • [18] Ming-Hao Chuang, Ming-Hung Tsai, Woei-Ren Wang, Su-Jien Lin, Jien-Wei Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia 59, 6308–631, 2011.
  • [19] H. M. Daoud, A. Manzonı, R. Vo¨ Lkl, N. Wanderka And U. Glatzel, Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy, The Minerals, Metals & Materials Society, 65, 1805-1814, 2013.
  • [20] Mariela F. del Grosso, Guillermo Bozzolo, Hugo O. Mosca, Determination of the transition to the high entropy regime for alloys of refractory elements, Journal of Alloys and Compounds 534, 25–31, 2012.
  • [21] Daniel B. Miracle, Jonathan D. Miller, Oleg N. Senkov, Christopher Woodward, Michael D. Uchic and Jaimie Tiley, Exploration and Development of High Entropy Alloys for Structural Applications, Entropy, 16, 494-525, 2014.
  • [22] B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys, Elsevier, 2014.
  • [23] Michael C. Gao, Jien-Wei Yeh, Peter K. Liaw, Yong Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, 1-516, 2016.
  • [24] Jien-Wei Yeh, “Recent Progress in High-Entropy Alloys”, Annales De Chimie – Science des Materiaux, 31, 633-648 2006.
  • [25] Yeh JW. Recent progress in high-entropy alloys. Presentation at Changsha meeting; 2011.
  • [26] Yeh, J.W., Alloy design strategies and future trends in high-entropy alloys. J. Met. 65, 1759-1771, 2013.
  • [27] Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater; 6(5), 299–303, 2004.
  • [28] Jien-Wei Yeh, Shou-Yi Chang, Yu-Der Hong, Swe-Kai Chen, Su-Jien Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics 103, 41–46, 2007.
  • [29] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122, 448-511, 2017.
  • [30] Kao YF, Chen TJ, Chen SK, Yeh JW. Microstructure and mechanical property of As-cast, homogenized and deformed AlxCoCrFeNi (06 x 62) high-entropy alloys, J Alloy Compd; 488, 57–64, 2009.
  • [31] Fuyang Tian, Lajos K. Varga, Nanxian Chen, Jiang Shen, Levente Vitos, Empirical design of single phase high-entropy alloys with high hardness, Intermetallics 58, 1-6, 2015.
  • [32] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 1-8, 2015.
  • [33] Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solidsolution phase formation rules for multi-component alloys. Adv Eng Mater.; 10, 534–538, 2008.
  • [34] Guo S, Liu CT. Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci: Mater Int.; 21, 433–446, 2011.
  • [35] Akira Takeuchi and Akihisa Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Materials Transactions, 46, 12,. 2817-2829, 2005.
  • [36] Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., Wanderka, N., Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212-215, 2013.
  • [37] Wang, F.J., Zhang, Y., Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214_216, 2008.
  • [38] Li, Q.H., Yue, T.M., Guo, Z.N., Lin, X., Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metall. Mater. Trans. A 44, 1767_1778, 2013.
  • [39] Varalakshmi, S., Kamaraj, M., Murty, B.S., Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703-2709, 2010.
  • [40] Cui, H., Zheng, L., Wang, J., Microstructure evolution and corrosion behaviour of directionally solidified FeCoNiCrCu high entropy alloy. Appl. Mech. Mater. 66-68, 146_149 2011.
  • [41] Li, C., Li, J.C., Zhao, M., Jiang, Q., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. J. Alloys Compd. 475, 752_757, 2009.
  • [42] G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, Journal of Alloys and Compounds 591, 11–21, 2014.
  • [43] Mishra, A.K., Samal, S., Biswas, K., Solidification behaviour of TiaCuaFeaCoaNi high entropy alloys. Trans. Indian Inst. Met., 725-730, 2012.
  • [44] Mridha, S., Samal, S., Khan, P.Y., Biswas, K., Govind, Processing and consolidation of nanocrystalline CuaZnaTiaFeaCr high-entropy alloys via mechanical alloying. Metall. Mater. Trans. A 44, 4532-4541, 2013.
  • [45] Juan, C.C., Hsu, C.Y., Tsai, C.W., Wang, W.R., Sheu, T.S., Yeh, J.W., On microstructure and mechanical performance of AlCoCrFeMo0.5Nix high-entropy alloys. Intermetallics 32, 401_407, 2013.
  • [46] Chen, T.K., Shun, T.T., Yeh, J.W., Wong, M.S., Nanostructured nitride films of multielement high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188_189, 193-200, 2004.
  • [47] Tong, C.J., Chen, M.R., Chen, S.K., Yeh, J.W., Shun, T.T., Lin, S.J., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263-1271, 2005.
  • [48] Tong, C.J., Chen, Y.L., Chen, S.K., Yeh, J.W., Shun, T.T., Tsau, C.H, Microstructure characterization of AlxCoCrCuFeNi, 2005.
  • [49] Tung, C.C., Yeh, J.W., Shun, T.T., Chen, S.K., Huang, Y.S., Chen, H.C., On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61, 1-5, 2007.
  • [50] Hsu, C.Y., Sheu, T.S., Yeh, J.W., Chen, S.K., Effect of iron content on wear behaviour of AlCoCrFexMo0.5Ni high-entropy alloys. Wear 268, 653-659, 2010.
  • [51] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika,O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, Journal of Alloys and Compounds 628 (2015) 170–185.
  • [52] Zhou, Y.J., Zhang, Y., Wang, Y.L., Chen, G.L., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904, 1-3, 2007..
  • [53] Tsai, C.W., Tsai, M.H., Yeh, J.W., Yang, C.C., Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy. J. Alloys Compd. 490, 160-165, 2010.
  • [54] N.D. Stepanov, D.G.Shaysultanov, G.A.Salishchev, M.A.Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Materials Letters 142 (2015) 153–155.
  • [55] S.G. Ma, S.F. Zhang, M.C. Gao, P.K. Lıaw, And Y. Zhang, A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification, JOM, 65, 12, 2013.
  • [56] Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci, 46:1–184, 2001.
  • [57] Sicong Fang, Weiping Chen, Zhiqiang Fu, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, Materials and Design 54, 973–979, 2014.
  • [58] Zhiqiang Fu, Weiping Chen, Sicong Fang, Dayue Zhang, Huaqiang Xiao, Dezhi Zhu, Alloying behavior and deformation twinning in aCoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, Journal of Alloys and Compounds 553, 316–323, 2013.
  • [59] Zhiqiang Fu, Weiping Chen, Huaqiang Xiao, Liwei Zhou, Dezhi Zhu, Shaofeng Yang, Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique, Materials and Design 44, 535–539, 2013.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi