BAKIR ASETAT MONOHİDRATIN (Cu(CH3COO)2.H2O) TERMAL BOZUNMASINDAN BAKIR OKSİT (CuO) SENTEZİ

   Bakır asetat monohidratın (Cu(CH3COO)2.H2O) termal bozunma yolu ile bakır oksit (CuO) sentezi hava ortamında izotermal olmayan şartlar altında 10°C dak-1’lik ısıtma hızıyla TG-DTG/DSC cihazında incelendi. 25°C’den 900°C’ye kadar termal bozunma prosesinin üç adımda gerçekleştiği görüldü (iki kütle kayıp bölgesi ve bir küçük kütle kazanç bölgesi). 200, 300, 400°C sıcaklıklarda elde edilen ürünler X-ışını kırınımı (XRD), Fourier dönüşümü kızılötesi spektroskopisi (FTIR), Taramalı elektron mikroskobu (SEM), ve Enerji dağıtıcı spektroskopisi (EDS) analizleri ile karakterize edildi. XRD sonuçları CuO nanopartiküllerin monoklinik kristal yapıya sahip olduğunu göstermektedir. SEM görüntüleri CuO nanopartiküllerinin şekil olarak küresel olduğunu göstermektedir. CuO nanopartiküllerin boyutu, tavlama sıcaklığındaki bir artışla azaldı.

SYNTHESIS OF COPPER OXIDE (CuO) FROM THERMAL DECOMPOSITION OF COPPER ACETATE MONOHYDRATE (Cu(CH3COO)2.H2O)

   The synthesis of copper oxide (CuO) via the thermal decomposition of copper (II) acetate monohydrate (Cu(CH3COO)2.H2O) in air atmosphere was investigated at TG-DTG/DSC apparatus with the heating rate of 10°C min-1 under non-isothermal conditions from 25 to 900°C. It was seen from TG-DTG/DSC analyzes that the thermal decomposition process consists of three main steps (two mass-loss regions and a tiny mass-gain region). The obtained products at 200, 300, 400°C temperatures  were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Energy disperse spectroscopy (EDS) analysis. The XRD results show that the CuO nanoparticles having the monoclinic crystal structure. The SEM images showed that CuO nanoparticles were spherical in shape. The size of CuO nanoparticles decreased with an increase in annealing temperature.  

___

  • [1] ACHARYA, A., BEHERA, R.G., ROY, S., ‘‘Non-linear characteristic of copper oxide (CuO) through Z-scan technique’’, Lat. Am. J. Phys. Educ, 6(3), 402-406, 2012.
  • [2] TAMAEKONG, N., LIEWHIRAN, C., AND PHANICHPHANT, S., ‘‘Synthesis of Thermally Spherical CuO Nanoparticles’’, Journal of Nanomaterials, 6, 2014.
  • [3] ETHIRAJ, A.S. KANG, D.J., ‘‘Synthesis and characterization of CuO nanowires by a simple wet chemical method’’, Nanoscale Research Letters, 7(70), 2012.
  • [4] SWITZER, J.A., KOTHARI H.M., POIZOT P., NAKANISHI S., BOHANNAN, E.W., ‘‘Enantiospecific electrodeposition of a chiral catalyst’’, Nature, 425, 490-493, 2003.
  • [5] ANANDAN, S., WEN X., YANG S., ‘‘Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells’’, Mater Chem Physics., 93, 35-40, 2005.
  • [6] CHOWDHURI, A., SHARMA, P., GUPTA, V., SREENIVAS, K., RAO K.V., ‘‘H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands’’, Journal of Applied Physics, 92, 2172-2180, 2002.
  • [7] BENNICI, S., GERVASINI, A., ‘‘Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2)’’, Applied Catalysis. B, 62, 336-344, 2006.
  • [8] GHOSH, S., AVASTHI, D.K., SHAH, P., GANESAN, V., GUPTA, A., SARANGI, D., BHATTACHARYA, R., ASSMANN, W., ‘‘Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization’’, Vacuum, 57, 377-385, 2000.
  • [9] HSIEH, C.T., CHEN, J.M., LIN, H.H., SHIN, H.C., ‘‘Field emission from various CuO nanostructures’’, Applied Physics Letter, 83, 3383-3385, 2003.
  • [10] WU, J.J., LIU, S.C., ‘‘Catalyst-Free Growth and Characterization of ZnO Nanorods’’, Journal of Physical Chemistry B, 106, 9546, 2002.
  • [11] PARK, J.Y., LEE, D.J., YUN, Y.S., MOON, J.H., LEE, B.T., KIM, S.S., ‘‘Temperature-induced morphological changes of ZnO grown by metalorganic chemical vapor deposition’’, Journal of Crystal Growth, 276, 158-164, 2005.
  • [12] ZHANG, Y.S., WANG, L.S., LIU, X.H., YAN, Y.J., CHEN, C.Q., ZHU, J., ‘‘Synthesis of Nano/Micro Zinc Oxide Rods and Arrays by Thermal Evaporation Approach on Cylindrical Shape Substrate’’, Journal of Physical Chemistry B, 109, 13091-13093, 2005.
  • [13] JIE, J.S., WANG, G.Z., WANG, Q.T., CHEN, Y.M., HAN, X.H., WANG, X.P., HOU, J.G., ‘‘Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template’’, Journal of Physical Chemistry B, 108, 11976, 2004.
  • [14] ZHENG, M.J., ZHANG, L.D., LI, G.H., SHEN, W.Z., Chemical Physics Letter, 363, 123, 2002.
  • [15] LE, H.Q., CHUA, S.J., KOH, Y.W., LOH, K.P., FITZGERALD, E.A., ‘‘Systematic studies of the epitaxial growth of single-crystal ZnO nanorods on GaN using hydrothermal synthesis’’, Journal of Crystal Growth, 293(1), 1, 36-42, 2006.
  • [16] LEE, J.H., LUE, I.C., HON, M.H., ‘‘Substrate effect on the growth of well-aligned ZnO nanorod arrays from aqueous solution’’ Journal of Crystal Growth, 275, e2069-e2075., 2005.
  • [17] KAUR, M., MUTHE, K.P., DESPANDE, S.K., CHOUDHURY, S., SINGH, J.B., VERMA, N., ‘‘Growth and branching of CuO nanowires by thermal oxidation of copper’’, Journal of Crystal Growth, 289, 670-675, 2006.
  • [18] CAO, M.H., WANG, Y.H., GUO, C.X., QI, Y.J., HU, C.W., WANG, E.B., ‘‘A simple route towards CuO nanowires and nanorods’’, Journal of Nanoscience and Nanotechnology, 4, 824-828, 2004.
  • [19] WANG, W.Z., VARGHESE, O.K., RUAN, C.M., PAULOSE, M., GRIMES, C.A., ‘‘Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates’’, Journal Materials Research, 18, 2756-2759, 2003.
  • [20] XU, C., LIN, Y., XU, G., WANG, G., ‘‘Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor’’, Materials Research Bulletin, 37, 2365-2372, 2002.
  • [21] JIANG, X.C., HERRICKS, T., XIA, YN., ‘‘CuO nanowires can be synthesized by heating copper substrates in air’’, Nano Letter, 2, 1333-1338, 2002.
  • [22] LIN, Z., HAN, D., LI, S., ‘‘Study on thermal decomposition of copper (II) acetate monohydrate in air’’, Journal of Thermal Analysis Calorimetry, 107, 471-475, 2012.
  • [23] MANSOUR, S.A.A., ‘‘Thermoanalytical Investigations of the Decomposition Course of Copper Oxysalts III. Copper (II) acetate monohydrate’’, J Thermal Analysis, 46, 263-274, 1996.
  • [24] KLUG H.P., ALEXANDER L.E., ‘‘X-ray diffraction procedures: for polycrys and amorphous materials. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials’’, 2nd Edition, Wiley-VCH, pp 992, 1974.
  • [25] NYQUIST, R.A., KAGEL, R.O., ‘‘Infrared Spectra of Inorganic Compounds’’, New York and London: Academic Press, 220, 1997.
  • [26] KLICHE, K., POPOVIC, Z.V., ‘‘Far-infrared spectroscopic investigations on CuO’’, Physical Review B, 42, 10060-10066, 1990.