ASENKRON MOTORUN ALAN ZAYIFLAMA BÖLGESİNDE KAYAN KİP DENETÇİ TABANLI HIZ-ALGILAYICISIZ DOĞRUDAN VEKTÖR KONTROLÜ

   Bu çalışmada, asenkron motorların (ASM’lerin) hız-algılayıcısız kayan kip denetçi (KKD)-tabanlı doğrudan vektör kontrolünde (DVK’sında) rotor akısının αβ- stator duran eksen takımı bileşeni ( ve ), rotor mekanik açısal hızı (), yük momenti (), mıknatıslama endüktansı () ve rotor direnci () kestirimi için indirgenmiş dereceli genişletilmiş Kalman filtresi (İDGKF) temelli yeni bir kestirici önerilmiştir. Önerilen İDGKF kestiricisinin kestirim başarımı ve bu kestiricinin hız-algılayıcısız KKD-tabanlı DVK’da kullanılması ile de sürücü sisteminin kontrol başarımı benzetim ortamında test edilmiştir. Benzetim ortamında gerçekleştirilen kestirim ve kontrol başarımına ilişkin testlerde, ASM sıfır hızdan anma hızına () ve anma hızının üzerindeki alan zayıflama bölgesini de kapsayan geniş bir hız aralığında çalıştırılmış ve tüm hız aralıklarında zorlayıcı durum ve parametre değişimleri meydana getirilmiştir. Bu zorlayıcı referans değişimleri altında, benzetim ortamından elde edilen kestirim sonuçları, önerilen İDGKF algoritmasının yüksek bir kestirim başarımına ve dolayısıyla ASM’nin KKD-tabanlı DVK’sının sıfır hızdan alan zayıflama bölgesini de içeren geniş bir hız aralığında yüksek başarımlı bir kontrol performansına sahip olduğunu göstermektedir. Böylelikle, ilk kez bu çalışmada önerilen İDGKF temelli yeni kestiricinin, ASM’nin hız-algılayıcısız sürücü sisteminin durum ve parametre değişimlerine karşı daha gürbüz bir yapı sergilemesine olanak sağladığı gösterilmiştir.

SPEED-SENSORLESS SLIDING MODE CONTROLLER BASED DIRECT VECTOR CONTROL OF INDUCTION MOTOR IN FIELD WEAKENING REGION

   In this paper, a new reduced order extended Kalman filter (ROEKF)- based estimator is proposed for the estimations of αβ- stator stationary axis components of rotor flux ( ve ), rotor mechanical angular velocity (), load torque (), magnetizing inductance (), and rotor resistance () which is used in speed-sensorless sliding mode controller (SMC)-based direct vector control (DVC) of induction motors (IMs). The estimation performance of the proposed ROEKF estimator and the control performance of the drive system are also tested in simulation by using this estimator in the speed-sensorles SMC-based DVC. In the simulation test on the estimation and control performance of whole drive system, the IM is operated from zero speed to rated speed () and above the  which is known as field weakening region in the literature, and state/parameter changes are made at all operation region. Under these coercive changes of the states and parameters, the simulation results show that the proposed ROEKF estimator and SMC-based DVC of IM have high estimation and control performance in a wide speed range including zero speed to field weakening region. In this way, it is shown that the ROEKF-based new estimator which is proposed for the first time in this study, allows the speed-sensorless drive system of IM to exhibit a more robust structure against the state and parameter changes.

___

  • [1] HOLMES, DG., MC GRATH, BP., PARKER, SG., "Current Regulation Strategies for Vector-Controlled Induction Motor Drives”, IEEE Transactions on Industrial Electronics, 59(10), 3680-3689, 2012.[2] ASTROM, KJ., HAGGLUND, “The future of PID control”, Control Engineering Practice, 9(11), 1163-1175, 2001.[3] BARUT, M., BOGOSYAN, S., “Sensorless Sliding Mode Position Control of Induction Motors Using Braided Extended Kalman Filters”, IEEE International Symposium on Industrial Electronics, 2268-2273, Vigo, Spain, 2007.[4] BARAMBONES, O., ALKORTA P., “Position Control of the Induction Motor Using an Adaptive Sliding-Mode Controller and Observers”, IEEE Transactions on Industrial Electronics, 61(12), 6556-6565, 2014.[5] MORINO, R., PERESEDA, S., VALIGI, P., “Adaptive input-output linearizing control of induction motors”, IEEE Transactions on Automatic Control, 38(2), 208-221, 1993.[6] GUZINSKI, J., ABU-RUB, H., “Speed Sensorless Induction Motor Drive with Predictive Current Controller”, IEEE Transactions on Industrial Electronics, 60(2), 699-709, 2013.[7] ALKORTA, P., BARAMBONES, O., CORTAJARENA, J.A, ZUBIZARRRETA, A., “Efficient Multivariable Generalized Predictive Control for Sensorless Induction Motor Drives”, IEEE Transactions on Industrial Electronics, 61(9), 5126-5134, 2014.[8] TEJA, AVR., CHAKRABORTY, C., MAITI, S., HORI, Y., “A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives”, IEEE Transactions on Industrial Electronics, 60(2), 3757-3767, 2012.[9] ORLOWSKA-KOWALSKA, T., DYBKOWSKI, M., SZABAT, K., “Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors”, IEEE Transactions on Industrial Electronics, 57(2), 553-564, 2010.[10] TALLA, J., LEU, VQ., ŠMÍDL, V., PEROUTKA, Z., “Adaptive Speed Control of Induction Motor Drive with Inaccurate Model”, IEEE Transactions on Industrial Electronics, 65(11), 8532-8542, 2018.[11] SIRA-RAMÍREZ, H., GONZÁLEZ-MONTAÑEZ, F., CORTÉS-ROMERO, JA., LUVIANO-JUÁREZ, A., “A Robust Linear Field-Oriented Voltage Control for the Induction Motor: Experimental Results”, IEEE Transactions on Industrial Electronics, 60(8), 3025-3033, 2013.[12] SUETAKE, M., DA SILVA IN., GOEDTEL, A., “Embedded DSP-Based Compact Fuzzy System and Its Application for Induction-Motor V/f Speed Control”, IEEE Transactions on Industrial Electronics, 58(3), 750-760, 2011.[13] GUO, L., PARSA. L., “Model Reference Adaptive Control of Five-Phase IPM Motors Based on Neural Network, IEEE Transactions on Industrial Electronics, 59(3), 1500-1508, 2012.[14] GADOUE, SM., GIAOURIS, D., FINCH, JW., “Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers”, IEEE Transactions on Industrial Electronics, 56(8), 3029-3039, 2009.[15] SHIAU, L., LIN, J., “Stability of sliding-mode current control for high performance induction motor position drives”, IEEE Proceedings on Electric Power Applications, 148(1), 69-75, 2001.[16] KAYNAK, O., ERBATUR, K., ERTUGRUL, M., “The fusion of computationally intelligent methodologies and sliding-mode control-a survey”, IEEE Transactions on Industrial Electronics, 48(1), 4-17, 2001.[17] HUNG, JY., GAO, W., HUNG, JC., “Variable structure control: a survey”, IEEE Transactions on Industrial Electronics, 40(1), 2-22, 1993.[18] UTKIN, VI., “Sliding mode control design principles and applications to electric drives”, IEEE Transactions on Industrial Electronics, 40(1), 23-36, 1993.[19] YAN Z., JIN, C., UTKIN, VI., “Sensorless sliding-mode control of induction motors”, IEEE Transactions on Industrial Electronics, 47(6), 1286-1297, 2000.[20] RODIC, M., JEZERNIC, K., “Speed-sensorless sliding-mode torque control of an induction motor”, IEEE Transactions on Industrial Electronics, 49(1), 87-95, 2002.[21] ARAB MARKADEH, GR., SOLTANI, J., “Sliding‐mode control for speed sensorless induction machine drive using an adaptive nonlinear rotor flux observer”, COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 25(4), 940-963, 2006.[22] BENNASSAR, A., ABBOU, A., AKHERRAZ, M, ESSALMI, A., BARARA, M., MAHMOUDI, H., “Sensorless Sliding Mode Control of Induction Motor Based on Luenberger Observer Using Fuzzy Logic Adaptation Mechanism”, Journal of Theoretical and Applied Information Technology, 65(1), 130-136, 2005.[23] DI GENNARO S., DOMÍNGUEZ JR., MEZA, MA., “Sensorless High Order Sliding Mode Control of Induction Motors with Core Loss”, IEEE Transactions on Industrial Electronics, 61(6), 2678-2689, 2014.[24] JING, C., CHAONAN, T., “Sliding mode repetitive equivalent control for induction motor based on hardware-in-loop system”, 43rd Annual Conference of the IEEE Industrial Electronics (IECON 2017), 3116-3121, Beijing, China, 2017.[25] REZGUI, SE., BENALLA, H., “New Robust and Mechanical Sensorless Scheme for SVM Inverter Fed Induction Motor Drive Using Variable Structure Controllers and MRAS”, Arabian Journal for Science and Engineering, 38(6), 1449-1458, 2013.[26] TRAORÉ, D., PLESTAN, F., GLUMINEAU, A., DE LEON J., “Sensorless Induction Motor: High-Order Sliding-Mode Controller and Adaptive Interconnected Observer”, IEEE Transactions on Industrial Electronics, 55(11), 3818-3827, 2008.[27] INAN, R., BARUT, M., “Bi input-extended Kalman filter-based speed-sensorless control of an induction machine capable of working in the filed-weakening region”, Turkish Journal of Electrical Engineering & Computer Sciences, 22(3), 588-604, 2014.[28] HUANG, M. S., LIAW, C. M., “Improved field-weakening control for IFO induction motor”, IEEE Transactions on Aerospace and Electronic Systems, 39(2), 647-659, 2003.[29] SHIN, M. H., HYUN, D. S., “Speed sensorless stator flux-oriented control of induction machine in the field weakening region”, IEEE Transactions on Power Electronics, 18(2), 580-586, 2003.[30] MATSUSE, K., KUBOTA, H., “Deadbeat flux level control of high power saturated induction servo motor using rotor flux observer”, IEEE Industrial Application Society Annual Meeting, Dearborn MI, USA, 409-414, 1991.[31] KLAES, N., R., “Parameter identification of an induction machine with regard to dependencies on saturation”, IEEE Transactions on Industry Applications, 29(6), 1135-1140, 1993.[32] ZHAO, L., HUANG, J., CHEN, J., YE, M., “A Parallel Speed and Rotor Time Constant Identification Scheme for Indirect Field Oriented Induction Motor Drives”, IEEE Transactions on Power Electronics, 31(9), 6494-6503, 2016.[33] CAO, P., ZHANG, X., YANG, S., “A Unified-Model-Based Analysis of MRAS for Online Rotor Time Constant Estimation in an Induction Motor Drive”, IEEE Transactions on Industrial Electronics, 64(6), 4361-4371, 2017.[34] WANG, B., ZHAO, Y., YU, Y., WANG, G., XU, D., DONG, Z., “Speed-Sensorless Induction Machine Control in the Field-Weakening Region Using Discrete Speed-Adaptive Full-Order Observer”, IEEE Transactions on Power Electronics, 31(8), 5759-5773, 2016.[35] ZHANG, Y., BAI, Y., YANG, H., ZHANG, B., “Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives with Speed Sensorless and Field-Weakening Operation”, IEEE Transactions on Industrial Electronics, Early Access, 1-11, 2018.[36] HABIBULLAH, M., LU, DD., “A Speed-Sensorless FS-PTC of Induction Motors Using Extended Kalman Filters”, IEEE Transactions on Industrial Electronics, 62(11), 6765-6778, 2015.[37] HABIBULLAH, M., LU, DD., XIAO, D., FLETCHER, JE., RAHMAN, MF., “Predictive Torque Control of Induction Motor Sensorless Drive Fed by a 3L-NPC Inverter”, IEEE Transactions on Industrial Informatics, 13(1), 60-70, 2017.[38] DENGHAN-AZAD, E., GADOUE, S., ATKINSON, D., SLATER, H., BARRASS, P. BLAABJERG, F., “Sensorless Control of IM for Limp-Home Mode EV Applications”, IEEE Transactions on Power Electronics, 32(9), 7140-7150, 2017.[39] DENGHAN-AZAD, E., GADOUE, S., ATKINSON, D., SLATER, H., BARRASS, P. BLAABJERG, F., “Sensorless Control of IM Based on Stator-Voltage MRAS for Limp-Home EV Applications”, IEEE Transactions on Power Electronics, 33(3), 1911-1921, 2018.[40] ZAKY, MS., KHATER, MM., SHOKRALLA, SS., YASIN, HA., “Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives”, IEEE Transactions on Industrial Electronics, 56(5), 1699-1707, 2009.[41] ORLOWSKA-KOWALSKA, T., TARCHALA, G., DYBKOWSKI, M., “Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive”, Mathematics and Computers in Simulation, 98, 31-45, 2014.[42] INAN, R., BARUT, M., ZERDALI, E., DEMIR, R., YILDIZ, R., “FPGA Realization of EKF Based Speed-Sensorless Drive Working in Field-Weakening Region”, International Conference on Engineering Technology and Innovation ICETI 2017, 81-88, Sarajevo, Bosna-Hersek, 2017.[43] INAN, R., DEMIR, R., BARUT, M., “Hybrid Estimator Based Direct Vector Control of IM with Speed-Sensor”, OHU Journal of Science, 7(2), 612-623, 2018.[44] ALONGE, F., CIRRINCIONE, M., PUCCI, M., SFERLAZZA, A., “A Nonlinear Observer for Rotor Flux Estimation of Induction Motor Considering the Estimated Magnetization Characteristic”, IEEE Transactions on Industry Applications, 53(6), 5952-5965, 2017.[45] LIU, L., DU, X., SHEN, S., “Indirect field-oriented torque control of induction motor considering magnetic saturation effect: error analysis”, IET Electric Power Applications, 11(6), 1105-1113, 2017.[46] RUAN, J., WANG, S., “Magnetizing Curve Estimation of Induction Motors in Single-Phase Magnetization Mode Considering Differential Inductance Effect”, IEEE Transactions on Power Electronics, 31(1), 497-506, 2016.[47] DEMIR, R., BARUT, M., YILDIZ, R., "Asenkron Motorların Hız-Algılayıcılı Doğrudan Vektör Kontrolü için İndirgenmiş Dereceli Genişletilmiş Kalman Fitresi Tabanlı Parametre Kestirimi", Otomatik Kontrol Ulusal Toplantısı TOK 2017, 562-567, İstanbul, Türkiye, 2017.[48] YIN, Z., ZHAO, C., LIU, J., ZHONG, Y., “Research on Anti-Error Performance of Speed and Flux Estimator for Induction Motor Using Robust Reduced-Order EKF”, IEEE Transactions on Industrial Informatics, 9(2), 1037-1046, 2013.[49] ALSOFYANI, IM., IDRIS, NRN., “Simple Flux Regulation for Improving State Estimation at Very Low and Zero Speed of a Speed Sensorless Direct Torque Control of an Induction Motor”, IEEE Transactions on Power Electronics, 31(4), 3027-3035, 2016.[50] ZERDALI, E., BARUT, M., “Novel version of bi input-extended Kalman filter for speed-sensorless control of induction motors with estimations of rotor and stator resistances, load torque, and inertia”, Turkish Journal of Electrical Engineering & Computer Sciences, 24, 4525-4544, 2016.[51] HUNG, JY., GAO, W., HUNG, JC., “Variable structure control: a survey”, IEEE Transactions on Industrial Electronics, 40(1), 2-22, 1993.[52] SAHIN, C., SABANOVIC, A. GOKASAN, M., “Robust position control based on chattering free sliding modes for induction motors”, IEEE 1995 International Conference on Industrial Electronics, Control, and Instrumentation, 512-517, Orlando, FL, New York, ABD, 1995.