MATEMATİK DERSİNE YÖNELİK SEVGİNİN YORDAYICILARI: ÖZGÜVEN, DEĞER VE ÖĞRETİMSEL ANLAŞILIRLIK İLİŞKİSİ – TIMSS 2019

Bu araştırmada, matematik dersine yönelik sevgide öğrencilerin matematik alanına verdiği değer, matematik alanında hissettikleri özgüven ve matematik derslerinin öğretimsel açıdan açıklığının kestirim gücünü tespit etmek amaçlanmıştır. Araştırmada, TIMSS 2019 (Trends in International Mathematics and Science Study) uygulamasına Türkiye'den katılan sekizinci sınıf öğrencilerinden elde edilen veri kullanılmıştır. Araştırma, ilişkisel modelde tasarlanmıştır. Hiyerarşik regresyon analizi sonuçları, öğrencilerin matematik dersine yönelik sevgisi üzerinde matematik alanında öğrencinin hissettiği özgüvenin en önemli değişken olduğunu, ardından matematik alanına atfettikleri değer ve matematik derslerinin öğrerimsel açıdan açıklığının geldiğini göstermektedir. Kurulan regresyon eşitliği ile öğrencilerin matematik dersine yönelik hissettikleri sevginin yaklaşık %60’ının açıklandığı belirlenmiştir. Araştırma sonucunda, matematik dersine yönelik sevginin temelinde hem duyuşsal hem de öğretimsel etmenler olduğu ve görece duyuşsal etmenlerin daha etkili olduğu belirtilebilir. Buna göre, öğrencilerin derse yönelik ilgisini ve bağını arttırmak ve matematik dersindeki performansını desteklemek için duyuşsal faktörlerin gelişimine zemin hazırlanmasının olumlu sonuçları olacağı ifade edilebilir. STEM (Science, Technology, Engineering and Mathematics) eğitiminin sınıf içinde başarısının hem öğrenci hem de öğretmen tarafından çok yönlü bir hazırbulunuşluğu gerektirdiği genel sonucuna ulaşılmıştır.

THE PREDICTORS OF STUDENTS’ LIKE MATHEMATICS: CONFIDENCE, VALUE, AND INSTRUCTIONAL CLARITY – TIMSS 2019

The aim of the current study was to determine the predictability of students’ like learning mathematics, their confidence in mathematics, perceived mathematical value, and instructional clarity in mathematics lessons. The data came from eighth-grade students in Turkey who took part in TIMSS 2019 (Trends in International Mathematics and Science Study) cycle. A correlational research model was adopted within the study. The results of the hierarchical regression analysis indicated that students’ confidence in mathematics was the most significant variable with the model, followed by the value of mathematics for students, and instructional clarity in mathematics lessons. The regression equation accounted for more than 60% of the total variance in students’ like learning mathematics. These results suggest that both affective and cognitive factors underlie students’ like learning mathematics, with affective factors being relatively more influential. Thus, triggering the development of affective factors in order to improve students’ interest in and connection to mathematics lessons and support their academic performance may yield positive outcomes. The study concludes that STEM education (Science, Technology, Engineering and Mathematics) in the classroom necessitates multi-faceted readiness on the part of both students and teachers.

___

  • Aini, N. R., Syafril, S., Netriwati, N., Pahrudin, A., Rahayu, T., & Puspasari, V. (2019, February). Problem-based learning for critical thinking skills in mathematics. In Journal of Physics: Conference Series (Vol. 1155, No. 1, p. 012026). IOP Publishing.
  • Ali, M. M. (1987). Durbin-Watson and generalized Durbin-Watson tests for autocorrelations and randomness. Journal of Business and Economic Statistics, 5(2), 195-203.
  • Atkinson, R. D., & Mayo, M. J. (2010). Refueling the US innovation economy: Fresh approaches to science, technology, engineering and mathematics (STEM) education. Washington: The Information Technology and Innovation Foundation.
  • Ay, K. ve Seferoğlu, S. S. (2021). Farklı ülkelerin STEM eğitimi politikalarının incelenmesi ve Türkiye için çıkarımlar. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 23(1), 82-105.
  • Azmidar, A., Darhim, D., & Dahlan, J. A. (2017, September). Enhancing students’ interest through mathematics learning. In Journal of Physics: Conference Series (Vol. 895, No. 1, p. 012072). IOP Publishing.
  • Blackley, S., & Howell, J. (2015). A STEM narrative: 15 years in the making. Austalian Journal of Teacher Education, 40(7), 102-112.
  • Brown, P. (2003). The opportunity trap: Education and employment in a global economy. European Educational Research Journal, 2(1), 141-179.
  • Brown, P., Lauder, H., & Ashton, D. (2011). The global auction: The broken promises of education, jobs, and incomes. Oxford: Oxford University Press.
  • Büyükgöze, H. ve Özdemir, M. (2016). Avrupa Yükseköğretim Alanı (AYA) çerçevesinde yükseköğretime erişimi ve katılımı genişletme politikalarının değerlendirilmesi. Yükseköğretim Dergisi, 6(1), 40-46.
  • Campbell, P. F., Nishio, M., Smith, T. M., Clark, L. M., Conant, D. L., Rust, A. H., ... & Choi, Y. (2014). The relationship between teachers' mathematical content and pedagogical knowledge, teachers' perceptions, and student achievement. Journal for Research in Mathematics Education, 45(4), 419-459.
  • Chen, X. (2022). The effects of individual- and class-level achievement on attitudes towards mathematics: An analysis of Hong Kong students using TIMSS 2019. Studies in Educational Evaluation, 72, 101113. https://doi.org/10.1016/j.stueduc.2021.101113
  • Chen, X., & Lu, L. (2022). How classroom management and instructional clarity relate to students’ academic emotions in Hong Kong and England: A multi-group analysis based on the control-value theory. Learning and Individual Differences, 98, 102183. https://doi.org/10.1016/j.lindif.2022.102183
  • Chou, C-P., & Bentler, P. M. (1995). Estimates and tests in structural equation modeling. In R. H. Boyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 37-56). Thousand Oaks, CA: SAGE.
  • DeMaris, A. (2004). Regression with social data: Modeling continuous and limited response variables. Hoboken, NJ: Wiley.
  • Di Martino, P., & Zan, R. (2011). Attitude towards mathematics: A bridge between beliefs and emotions. Zdm, 43(4), 471-482.
  • Durak, G., Çankaya, S., Nacak, A. F. ve Baysal, F. E. (2021). The current state of Turkish STEM research: A systematic review study. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 15(2), 383-403.
  • Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression I. Biometrika, 37, 409-428.
  • Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109-132. https://doi.org/10.1146/annurev.psych.53.100901.135153
  • English, L. D. (2015). STEM: Challenges and opportunities for mathematics education. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (pp. 04-18). Brisbane, Australia: Queensland University of Technology.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8. baskı). McGraw Hill.
  • Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London, England: SAGE.
  • Fishbein, B., Foy, P., & Yin, L. (2021). TIMSS 2019 User guide for the international database (2nd ed.). Retrieved from Boston College, TIMSS & PIRLS International Study Center website: https://timss2019.org/international-database/downloads/TIMSS-2019-User-Guide-for-the-International-Database-2nd-Ed.pdf
  • Furner, J., & Berman, B. (2005). Confidence in their ability to do mathematics: The need to eradicate math anxiety so our future students can successfully compete in a high-tech globally competitive world. Dimensions in Mathematics, 18(1), 28-31.
  • Gresham, G. (2008). Mathematics anxiety and mathematics teacher efficacy in elementary pre‐service teachers. Teaching Education, 19(3), 171-184.
  • Hannah, J., Stewart, S., & Thomas, M. (2016). Developing conceptual understanding and definitional clarity in linear algebra through the three worlds of mathematical thinking. Teaching Mathematics and its Applications: An International Journal of the IMA, 35(4), 216-235.
  • Hannula, M. S., Maijala, H., & Pehkonen, E. (2004). Development of Understanding and Self-Confidence in Mathematics; Grades 5-8. International Group for the Psychology of Mathematics Education.
  • Hannula, M., & Malmivuori, M. L. (1997). Gender differences and their relation to mathematics classroom context. In. E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education. Vol. 3, 33-40.
  • Harman, H. H. (1976). Modern factor analysis. Chicago, IL: University of Chicago.
  • Honebein, P. C., Duffy, T. M., & Fishman, B. J. (1993). Constructivism and the design of learning environments: Context and authentic activities for learning. In Designing environments for constructive learning (pp. 87-108). Springer, Berlin, Heidelberg.
  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441, 498–520. https://doi.org/10.1037/h0070888
  • Hsu, Y-S., & Fang, S-C. (2019). Opportunities and challenges of STEM education. In Y-S. Hsu & Y-F. Yeh (Eds.), Asia-Pacific STEM teaching practices (pp. 1-16). Springer. https://doi.org/10.1007/978-981-15-0768-7
  • Jameson, M. M. (2014). Contextual factors related to math anxiety in second-grade children. The Journal of Experimental Education, 82(4), 518-536.
  • Kline, R. B. (2005). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford Press.
  • Kunhertanti, K., & Santosa, R. H. (2018, September). The influence of students’ self confidence on mathematics learning achievement. In Journal of Physics: Conference Series (Vol. 1097, No. 1, p. 012126). IOP Publishing.
  • Li, L. (2022). Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Information Systems Frontiers. https://doi.org/10.1007/s10796-022-10308-y
  • Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019). The role of mathematics in interdisciplinary STEM education. ZDM Mathematics Education, 51, 869-884. https://doi.org/10.1007/s11858-019-01100-5
  • Macnab, D. (2000). Raising standards in mathematics education: Values, vision, and TIMSS. Educational Studies in Mathematics, 42, 61-80. https://doi.org/10.1023/A:1004190310335
  • Mahmud, M. M., & Wong, S. F. (2022). Stakeholder’s perspectives of the twenty-first century skills. Frontiers in Education. https://doi.org/10.3389/feduc.2022.931488
  • Ma, X. (1997). Reciprocal relationships between attitude toward mathematics and achievement in mathematics. The Journal of Educational Research, 90(4), 221-229.
  • McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. Handbook of research on mathematics teaching and learning, 1, 575-596.
  • Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its consequences for young adoloescents’ course enrollment intentions and performances in mathematics. Journal of Educational Pscychology, 82, 60-70.
  • Michelli, M. P. (2013). The relationship between attitudes and achievement in mathematics among fifth grade students. Honors Theses. 126. https://aquila.usm.edu/honors_theses/126
  • Middleton, J. A., & Spanias, P. A. (1999). Motivation for achievement in mathematics: Findings, generalizations, and criticisms of the research. Journal for research in Mathematics Education, 30(1), 65-88.
  • Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., & Fishbein, B. (2020). TIMSS 2019 International Results in Mathematics and Science. Retrieved from Boston College, TIMSS & PIRLS International Study Center website: https://timssandpirls.bc.edu/timss2019/international-results/
  • Ojose, B. (2008). Applying Piaget's theory of cognitive development to mathematics instruction. The mathematics educator, 18(1).
  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079.
  • Parsons, S., Croft, T., & Harrison, M. (2009). Does students’ confidence in their ability in mathematics matter?. Teaching Mathematics and its Applications: An International Journal of the IMA, 28(2), 53-68.
  • Phillips, L. M., Norris, S. P., & Macnab, J. S. (2010). Visualization in mathematics, reading and science education (Vol. 5). Springer Science & Business Media.
  • Pratama, G. S., & Retnawati, H. (2018, September). Urgency of higher order thinking skills (HOTS) content analysis in mathematics textbook. In Journal of Physics: Conference Series (Vol. 1097, No. 1, p. 012147). IOP Publishing.
  • Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi: 10.1037/0021-9010.88.5.879
  • Posamentier, A. S., & Smith, B. (2020). Teaching secondary school mathematics: Techniques and enrichment. https://www.worldscientific.com/doi/abs/10.1142/9789811211423_0001
  • Rayner, G., & Papakonstantinou, T. (2015). Employer perspectives of the current and future value of STEM graduate skills and attributes: An Australian study. Journal of Teaching and Learning for Graduate Employability, 6(1), 100-115.
  • Relich, J. (1996). Gender, self-concept and teachers of mathematics: Effects on attitudes to teaching and learning. Educational studies in mathematics, 30(2), 179-195.
  • Resnick, L. B., & Gall, N. L. (1987). Meaning Construction in Mathematical Problem Solving. ERIC ED299132.
  • Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & writing quarterly, 23(2), 139-159.
  • Singh, K., Granville, M., & Dika, S. (2002). Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, 95(6), 323-332.
  • Sungur-Gül, K., Saylan-Kırmızıgül, A. ve Ateş, H. (2022). Temel eğitim ve ortaöğretimde STEM eğitimi üzerine alanyazın incelemesi: Türkiye örneği. Batı Anadolu Eğitim Bilimleri Dergisi, 13(1), 544-568.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde güvenilirlik ve geçerlilik (1. Baskı). Ankara: Seçkin Yayıncılık.
  • Tartre, L. & Fennema, E. (1995). Mathematics achievement and gender: A longitudinal study of selected cognitive and affective variables. Educational studies in mathematics 28, 199-217.
  • Turner, J. C., Midgley, C., Meyer, D. K., Gheen, M., Anderman, E. M., Kang, Y., & Patrick, H. (2002). The classroom environment and students' reports of avoidance strategies in mathematics: A multimethod study. Journal of Educational Psychology, 94(1), 88–106. https://doi.org/10.1037/0022-0663.94.1.88
  • Tytler, R. (2020). STEM education for the 21st century. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education: An international perspective. Springer Nature.
  • Wang, M. T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological science, 24(5), 770-775.
  • Yagan, S. A. (2021). The relationships between instructional clarity, classroom management and mathematics achievement: Mediator role of attitudes towards mathematics. University of South Florida M3 Center Publishing, 3(2021), 7.
  • Yılmaz, Ç., Altun, S. A. ve Olkun, S. (2010). Factors affecting students’ attidude towards Math: ABC theory and its reflection on practice. Procedia-Social and Behavioral Sciences, 2(2), 4502-4506.